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- Field equations are ubiquitous in plasma physics (Poisson, Ampere’s law).

- In full-f models for edge/SOL codes, the generalised version needs to be solved.

- Can be reduced to set of independent 2D problem within poloidal planes.

- PARALLAX library: Provides equilibra, mesh and elliptic solver for Flux-Coordinate 
Independent (FCI) codes GRILLIX (fluid) [1] and GENE-X (gyrokinetic) [2].

INTRODUCTION / MOTIVATION

CONCLUSIONS / OUTLOOK

Elliptic equations play a crucial role in turbulence models for magnetic confinement fusion. 
Regardless of the chosen modeling approach – whether gyrokinetic, gyrofluid, or drift-fluid – 
the Poisson equation and Ampere's law lead to elliptic problems that must be solved on 2D 
planes perpendicular to the magnetic field. In this work, we present an efficient solver for 
such elliptic problems, discretized using finite difference methods. The solver is based on a 
flexible generalized minimal residual method (fGMRES) with a geometric multigrid 
preconditioner. We present implementations with OpenMP parallelization and GPU 
acceleration, with backends in CUDA and HIP. On the node level, significant speed-ups are 
achieved with the GPU implementation, outperforming standard library solutions such as 
PETSc. In accordance with theoretical scaling laws for multigrid methods, we observe 
near-linear scaling of the solver with problem size, O(N). This solver is integrated into the 
PARALLAX/PAccX libraries and serves as a central component of the boundary codes 
GRILLIX and GENE-X, where the latter aims for simulations at exascale.
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Discretisation

The PARALLAX/PAccX solvers
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- Logically unstructured.
- Locally Cartesian.
- Guarded by boundary points meandering around 

continuous boundary. 
- Mesh reordering possible to  optimize cache 

performance.

Mesh:

Discretisation:
- Second order finite differences on inner grid points:

- Boundary discretisation:

Properties of linear equation system:
- Sparse matrix with up to 5 entries per row.
- Matrix is time dependent due to dependency on coefficients.
- Non-zero structure remains fixed in time.
- Otherwise unstructured, non-zero structure can be optimised via mesh reordering.

Abstract solver design pattern:
- create: Factory routine returning solver object. Sets up internal data structures 

and allocates memory.
- update: Updates internal data with new coefficients and boundary conditions.
- solve: Solves system for given right hand side and initial guess.

Only update and solve are called within time loop and are performance critical.

Restriction and prolongation:

Smoother:

- Weighted restriction:

- Prolongation:

- Gauss-Seidel red black (boundaries)
- Shared memory parallelisation:

- Update even points,
- Update odd points
- Update boundary points

Solver:
- FGMRES with geometric multigrid preconditioner [3]
- Full multigrid  V and W cycle available
- Direct solver (LU) on coarsest level

PARALLAX:
- Abstract solver interface, called by GRILLIX and GENE-X
- Fortran implementation of FGMRES solver with geometric multigrid precondidtioner
- OpenMP parallelised (CPU)

PaccX: PARALLAX Accelerator library
- Called from PARALLAX via C-bind interfaces
- Several solvers available

- C++: CPU (yet serial)
- CUDA: FGMRES + multigrid
- HIP: FGMRES + multigrid
- Rocalution: Black box library from AMD

PaccX

Verification

- Assess numerical solution for analytically prescribed problem.
- Circular flux surfaces, with local Cartesian mesh.
- Verify all backends with Dirichlet and Neumann (only at core) 

boundary conditions

Procedure:

Results:
- Second order convergence for Dirichlet
- First order convergence for Neumann due to 

poor discretisation of boundary gradients
- All backends yield same results

Performance and scaling
Setup of benchmark:
- Raven@MPCDF GPU node: 72 Intel Xeon IceLake-SP with 4x Nvidia A100-SXM4
- Compare Fortran OMP solver with 18 CPU threads vs. PaccX-Cuda solver with 1 GPU

Results:
- Textbook scaling O(N) for CPU-OMP solver.
- CUDA solver only approaches O(N) scaling towards large problem sizes.
- CUDA solver overall much faster, speedup to factor 20.
- Consistent results also with HIP on LUMI and VIPER.
- Integration into GRILLIX with MPI framework successful.

small case: 5x speedup large case: 20x speedup

- Solver for field equations is performance critical to GRILLIX and GENE-X.
- Geometric multigrid solver was ported to GPU (CUDA and HIP).
- Very good speedups up to factor 20 is obtained.
- Outperforms standard library solutions (e.g. PETSc).
- Towards Exascale: MPI parallelisation needed → Rocalution/GINKGO ?


