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I. SHATTERED PELLET INJECTION (SPI)
Disruptions are violent off-normal events, in which the confinement of a tokamak plasma is
abruptly lost. Unmitigated disruptions pose an intolerable risk to reactor-relevant tokamaks due to
localised heat loads, vessel forces, halo- and eddy currents, and runaway electrons.

Disruption mitigation goals:

• Radiate away thermal energy isotropically to avoid localised heat loads. (−→ frad)
• Suppress runaway electron generation.
• Reduce vessel forces by controlling τCQ (i.e. Te shouldn’t drop too fast).

Mitigation techniques rely on massive material injection to increase free electron density, and to
introduce higher-Z noble gases (e.g. Ne or Ar) which cool isotropically via line radiation.
However, a single injection might not be sufficient.
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Figure 1: Illustration of ITER material injection schemes currently in consideration [14].

II. THE ASDEX UPGRADE SPI
SPI is the disruption mitigation method chosen for ITER. Hydrogen, neon, or mixtures of the two
are frozen into pellets containing several times the plasma inventory and launched at several
hundred m/s to the plasma. By breaking the pellet just before arrival, the surface-to-volume ratio is
increased to improve assimilation.

Open questions:

• Is multi-injection viable?
• How to suppress plasmoid drift?
• Optimum fragment size distribution?
• Optimum penetration speed?

Together with ITER, we have developed a
uniquely flexible SPI system for AUG [1,2]:

• 3 independent barrels
• Diameter range of 1–8 mm
• L/D range of ≈ 0.5 – 1.5
• Speed range of 50–800 m/s
• Lab tested 12 shatter head designs
• 1400 fragmentation experiments Figure 2: SPI fragment spread examples.

III. FRAGMENTATION EXPERIMENTS & ANALYSIS
The collected fragmentation videos were analysed using openCV [4] and machine learning [5].
We found major differences between data and the Parks model predictions.
However, peridynamic modeling matches AUG data well [6,7].

Figure 3: Deviation of experimental size distribution from the Parks model prediction [4].

Machine learning pipeline is used to automate the processing of all videos [5]. Successfully used
for spatial spread analysis and design of new shatter heads. Size distribution analysis limited by
optical resolution – the setup was designed using the Parks model.
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SUMMARY
• A uniquely flexible SPI system in support of ITER – crucial design input for ITER DMS
• Injection geometry impacts material assimilation, but not so much thermal load mitigation
• Significant impact on model validation using laboratory (peridynamics) and tokamak data

(DREAM, INDEX, JOREK ...)
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IV. AUG SPI EXPERIMENTS
Over 200 AUG plasma discharges were executed in 2022. We explored a wide range of pellet
and injection parameters to optimise thermal load mitigation and material assimilation. Preliminary
dual injection shots were also done.

Thermal load mitigation seems sensitive to neon content (as expected). Saturation is reached at
about 10% content. Except for intermediate neon concentrations, however, there is little impact of
the shatter geometry [9,14]. While this means that no optimisation is possible here, it also means
that we can choose the shatter head to optimise other aspects, such as material assimilation for
runaway electron suppression. An important quantifier is frad, which is defined as the ratio of
radiated energy to plasma energy, accounting for conducted energy and external heating.
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Figure 4: Dependence of radiated energy fraction on (a) neon content, (b) shatter head geometry
and (c) fragment size [14].

Radiation asymmetries according to the data are between factors of 1.2 and 1.6. This is beneficial
for ITER, as the fear of localised melting from the injection “flash” is reduced.

Material assimilation seems to be maximised with “large, fast” fragments for pure deuterium.
This points to shallow shatter angle geometries. The AUG data provides confidence to the ITER
choice of 15.5◦ shatter angle. More data is expected (required) from the 2025 campaign.

V. AUG SPI MODELING
There is ongoing modelling work with DREAM [10], INDEX [11] and JOREK [13] to understand the
trends observed in the 2022 campaign as well as to design the experimental plan for 2025.

DREAM and INDEX suggest that larger, faster fragments are better for assimilation – as also seen
in the experiments. While the radiated energy fractions are well-matched in DREAM and JOREK
with the experiment at increased neon doping, all codes underpredict frad for pure deuterium pellets.
The likely cause for this is background impurities, such as W.
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Figure 5: (a) Experimental validation of DREAM modelling of thermal load mitigation efficiency
with different neon contents and size distributions [10]. (b) INDEX modelling of neon
assimilation for thermal load mitigation as a function of fragment parameters [11].


