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ABSTRACT

This work discusses an extension of the gyrokinetic turbulence code
GENE-X, an Eulerian code which solves the Vlasov eq. on a grid using an
electromagnetic, collisional, full-f model. The project focuses on finite
(ion) Larmor radius (FLR) effects, relevant in both edge and particularly
core plasma, and their incorporation to the model through gyro-averages.
To this end, multiple methods will be implemented, such as the Padé ap-
proximants. Ultimately, this will enable GENE-X to accurately simulate
gyrokinetic turbulence from plasma core to the far SOL in tokamaks and
stellarators, crucial for minimizing turbulence-driven transport losses and
optimizing energy confinement.

GENE-X GYRO-AVERAGED EQUATIONS

Starting from [1], we re-derived GENE-X eqs. to include full-FLR effects
in Ho, H1 (0th and 1st order of Hamilt.) through gyro-averages, defined as
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PADE APPROXIMANT: MOTIVATION

Fourier F in gyro-average, eq. (1), o k) X PO/2 1 (10)
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L, elliptic solver

(2m)’

where Jy = Jy(p, k) = Bessel f. of
1st kind, and FLR operator in F.

To calculate the gyro-average, Pa-
dé approximant on J,
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PADE APPROXIMANT: ITG DISPERSION RELATION

FLR models studied in the derived electrostatic slab ion temperature gradient (ITG) dispersion
relation in Fourier space with diffusion in L and || directions. From GENE-X eqgs. and at 1st order,
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CONCLUSION AND OUTLOOK

This discussion outlined a strategy to incorporate full-FLR effects in {y and 7{; in GENE-X code.

- The FLR operator J,, eq. (9), motivates Padé approximants. Analyzing the case of eq. (12), Padé
on Iy, from where (J,) =~ T” 'Y (1 - p2V2)~12 can be retrieved, is the most physically rigorous

approach. Padé on directly J, provides approximated physics, but a more straightforward imple-
mentation, eq. (11).

- In a following step, a gyro-matrix method [6] based on grid interpolations will be included, ac-
counting for FLR to all orders.
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