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In order to reach fusion-relevant temperatures in the core of fusion devices
more easily, a reduction of outward fluxes is would be beneficial. Since these
fluxes are mainly driven by microturbulence (e.g. TEM, ITG) [1], the study of
the interaction of these modes with macroscopic plasma instabilities (such
as fishbones) is of fundamental importance.

Fishbones (FB) [2] develop around low order rational surfaces with ng = m,
with g, n and m safety factor and toroidal and poloidal mode numbers. Recent
results [3,4] show a link between FB trigger and turbulence level reduction. We
Investigate this physics with GENE linear and nonlinear global simulations.

TOOLS: THE GENE CODE

GENE [5] I1s a eulerian gyrokinetic code that solves the Vlasov-Maxwell
system, composed by the gyrokinetic equation,
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along with the equations for the evolution of the potentials ¢; and A, in the

5D phase space described by coordinates {x,y,z v, u}. We can perform linear
runs by neglecting the nonlinear interaction term ove.

PLASMA PROFILES AND SETUP

Fishbones are triggered by the presence of energetic particles (EP) inside the
tokamak. We consider a collisionless three species plasma: ions (H), electrons
and EP (high-T D). Electron and EP temperatures are flat with T,=T;(0.5)=1 keV
and densities n;=1, ngp=0.06 and n,= 1.06x10°m=3 hold at r/a=0.5. This setup
IS chosen in order to have only n=1 FB and ITG as unstable modes.

139 We consider a circular geometry with
R=10 m and a=1 m. On-axis magnetic
125  field 1s By=1 T, safety factor profile
q(r)=0.9+2.1(r/a)*. q=1 at r/a=0.47
120 holds. B,=0.075% and the simulation
| domain is 0.025< r/a <0.975.
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LINEAR SIMULATIONS

An analysis of the modes which develop in the setup is performed with GENE
linear simulations. Different flat EP temperatures are considered.

Linear mode spectra 2.1
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o An ITG mode branch peaks around n=24 for each setup.
o At Tgp=180 keV the n=1 mode is the only MHD Iinstability.
o When Tgp=120 keV, n=3 and 4 are unstable along with the n=1 mode.
o The cases with T;p=40 keV and without EP show no low-n mode. A dilution

effect [6] of EP Is observed in y when removing them and n; — n,.

Single mode analysis for Tgp=180 keV 2.2
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o The m=1 structure Is clearly dominant for the n=1 mode.
o Different m values contribute to the mode for higher n.
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INTRODUCTION AND MOTIVATIONS NONLINEAR SIMULATIONS

GENE nonlinear simulations are perfromed inlcuding n=0-47 modes for the cases
Trpp=10-40 keV, and w/o EP, with same S, ('l. B,’) and B:,; (‘h. B,’) of the case
with EP. A run with Tz;p=40 and n=0,2,...,46 Is also considered, along with a setup
with shifted q profile, (r/a|;=,=0.7) do not coincide with the gradients maximum.

Flux radial profiles and spectra 3.1

Total (ES+EM) heat fluxes Q;,; are studied vs the radial position r/a and the wave
number k,p; (In regions A and B) for ions and EP.
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o A reduction of fluxes is observed with increasing Tgp, In particular around g=1.
No relevant effect of removing the n=1 mode can be observed in ion fluxes.
Shifting the g profile, the ion flux depression in B disappears.
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o In A the n=1 mode iIs the main driver of EP transport for Tgp=40 keV with ref. q.

o In B, low-n modes concur with the ITG branch to drive transport when EP are
Included and g=1 coincides with the maximum of gradients.

Frequency analysis 3.2

Spectrograms for n=1,2 are computed vs r/a for Tzp=20, 30, 40 keV.
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o The n=1 mode intensifies as Tgp INncreases, along with an expansion to higher
r/a values of the radial domain of both modes.

o No definite frequencies can be identified for the n=1,2 modes in the setup with
Trp=40 keV and shifted g (spectrogram not reported here).

CONCLUSIONS AND PERSPECTIVES

o Linearly low-n high frequency modes are unstable for high enough Tgp values.

o Nonlinearly, ion fluxes are reduced by the inclusion of EP. The flux depression
around the g=1 position increases with the value of Tgp.

o Low-n modes are the main drivers of EP transport, with an n=1 dominace in A
for Tgp=40. Their contribution is suppressed when the g profile is shifted.

o As Tgp Increases, n=1,2 modes expand towards region B and the n=1 mode
becomes more and more relevant. It is not clear yet If these modes are linked to
the ion heat flux reduction observed at g=1 with increasing Tgp. Further analysis
(e.g. bicoherence) and simulations (cases with T;>40 keV) are ongoing.

o n=1 runs with ORB5 [7] are ongoing for comparison with GENE results.
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