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In W7-X experiments with steep density gradients:
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Motivation

(pellets+ECHR) / (NBI+ECRH): high triple product[1], reduced turbulence [2]
(NBI): high particle and impurity confinement [3,4]→ (my work: explain why with GENE)

[1]: S.A. Bozhenkov et al 2020 Nucl. Fusion 60 066011
[2]: O.P. Ford et al 2024 Nucl. Fusion 64 086067

[3]: S. Bannmann et al 2024 Nucl. Fusion 64 106015
[4]: T. Romba et al 2023 Nucl. Fusion 63 076023

particle flux: Γ ≈− D ∇n + V n
          

reduction of De by factor ~4
reduction of DC6+ by factor ~10

[3]



Motivation
Wendelstein 7-X
Gyrokinetics
Theoretical understanding until now
Numerical results
Discussion
Conclusions

3

Outline



Stellarator:
• disruption-free
• long-pulse-compatible

W7-X optimization:
• MHD stability
• fast ion confinement
• (and other criteria)
• low neoclassical transport

Turbulence is main transport channel
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Wendelstein 7-X

MPI für Plasmaphysik



Assumptions:
• Small fluctuations 𝛅𝐧

𝐧
≪ 1

• Strong anisotropy 𝐤|| ≪ 𝐤⊥

• Slow dynamics 𝛚𝐝 ≪ 𝛺 
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Gyrokinetics

Gyrokinetic equation

𝜕𝑓𝜎
𝜕𝑡

+ 𝑣∥ 𝒃𝟎 + 𝐵0
𝐵0∥

∗ 𝒗𝜉 + 𝒗𝛻𝐵 + 𝒗𝑐 ⋅

        𝛻𝑓𝜎 − 𝑞𝜎𝛻𝜙1 + 𝑞𝜎
𝑐

𝒃𝟎𝐴1∥
̇ + 𝜇𝛻 𝐵0 + 𝐵1∥

1
𝑚𝜎𝑣∥

𝜕𝑓𝜎
𝜕𝑣∥

= 0

ExB grad-B curvature

Poisson‘s equation

− 𝛻2𝜙1 𝑥 = 4𝜋 
𝜎

𝑛1𝜎 𝑥 𝑞𝜎

Ampère‘s law

− 𝛻⊥
2 𝐴1∥ = 4𝜋

𝑐 𝜎
𝑗1∥(𝑥)

|| streaming

Solve self-consistently together with: Tool:



Limitations: collisionless and electrostatic analyses (in majority of cases with 1
𝑇𝑒

𝑑𝑇𝑒
𝑑𝑟

=0)

What actually happens in the experiment?
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Theoretical understanding until now

[1]: J. Proll et al 2012 PRL 108 245002
[2]: J. Proll et al 2022 JPP 88 905880112
[3]: P. Costello et al 2023 J. Plasma Phys. 89 905890402

[4]: Helander et al 2015 Phys. Plasmas 22, 090706
[5]: Thienpondt et al 2025 Nucl. Fusion 65 016062

QI+Max-J:

𝜕𝐽
𝜕𝜓

< 0

𝐽 =
𝑙2

𝑙1
𝑚𝑣∥𝑑𝑙

geometry

0 < ηa < 2/3

for all species,

ηa = 1
𝑇

𝑑𝑇
𝑑𝑟

/ 1
𝑛

𝑑𝑛
𝑑𝑟

profiles

No TEM [1]

Universal
instability (UI)
appears
[2,3,4,5]

Trapped Electron Mode (TEM):
• electrostatic
• driven by density gradient
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Numerical setup

𝑎/𝐿𝑛 = 2.36 𝑇𝑖/𝑇𝑒= 1.1
𝑎/𝐿𝑇𝑒 = 1.54 𝛽𝑒 = 5 × 10−3

𝑎/𝐿𝑇𝑖 = 1.9

ηi = 0.8
ηe = 0.65
expected stabilization of both ITG and TEM

NBI phase of discharge 20181009.034

𝑎
𝐿𝑥

=− 𝑎
𝑥

𝑑𝑥
𝑑𝑟

ηa = 1
𝑇

𝑑𝑇
𝑑𝑟

/ 1
𝑛

𝑑𝑛
𝑑𝑟

𝛽𝑒 = 8𝜋𝑛𝑒0𝑇𝑒0
𝐵𝑟𝑒𝑓²
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Numerical setup

𝑎/𝐿𝑛 = 2.36 𝑇𝑖/𝑇𝑒= 1.1
𝑎/𝐿𝑇𝑒 = 1.54 𝛽𝑒 = 5 × 10−3

𝑎/𝐿𝑇𝑖 = 1.9

ηi = 0.8
ηe = 0.65
expected stabilization of both ITG and TEM

outline for GENE flux tube simulations, two species:
collisions

T F
beta T [Experiment] ?

F ? ?

NBI phase of discharge 20181009.034

𝑎
𝐿𝑥

=− 𝑎
𝑥

𝑑𝑥
𝑑𝑟

ηa = 1
𝑇

𝑑𝑇
𝑑𝑟

/ 1
𝑛

𝑑𝑛
𝑑𝑟

𝛽𝑒 = 8𝜋𝑛𝑒0𝑇𝑒0
𝐵𝑟𝑒𝑓²
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collisions
T F

beta T [Exp.] ?
F ? UI/iTEM

Beta scan without collisions

no beta βe = 10−6 : UI+iTEM

Universal Instability (UI):
• destabilized by a/Ln
• ωr <0
• driven by passing electrons [1,2]

• stabilized by beta [4]

ion-driven Trapped Electron Mode (iTEM):
• destabilized by a/Ln
• ωr ⪆0 [3]
• driven by trapped particles-> localization of Q at |B| wells

[1]: Helander et al 2015 Phys. Plasmas 22, 090706
[2]: P. Costello et al 2023 J. Plasma Phys. 89 905890402

[3]:G. Plunk et all 2017 J. Plasma Phys. 83 715830404
[4]:J.M. Duff et al 2025 Nucl. Fusion 65 046020

𝐁 = 𝑪 𝜵𝒙 × 𝜵𝒚
𝒙 = flux surface label
𝒚 = 𝒒𝜽∗ − 𝝓
𝒛 = arc length along 𝐁
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collisions
T F

beta T [Exp.] iTEM/
TEM

F ? UI/iTEM

Beta scan without collisions

Universal Instability (UI):
• destabilized by a/Ln
• ωr <0
• driven by passing electrons [1,2]

• stabilized by beta [4]

ion-driven Trapped Electron Mode (iTEM):
• destabilized by a/Ln
• ωr ⪆0 [3]
• driven by trapped particles-> localization of Q at |B| wells

nominal beta βe = 5 × 10−3 : iTEM/TEM
𝐁 = 𝑪 𝜵𝒙 × 𝜵𝒚

𝒙 = flux surface label
𝒚 = 𝒒𝜽∗ − 𝝓
𝒛 = arc length along 𝐁

[1]: Helander et al 2015 Phys. Plasmas 22, 090706
[2]: P. Costello et al 2023 J. Plasma Phys. 89 905890402

[3]:G. Plunk et all 2017 J. Plasma Phys. 83 715830404
[4]:J.M. Duff et al 2025 Nucl. Fusion 65 046020
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collisions
T F

beta T [Exp.] iTEM/TEM

F UI UI/iTEM

Beta scan with collisions
1. increase of beta
2. increase of  𝐵 fluctuations
3. decrease of passing 𝑒− mobility
4. smaller potential 𝜙
5. lower ExB

U. Stroth Plasmaphysik 2018

linear stabilization

larger beta
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collisions
T F

beta T [Exp.] iTEM/TEM

F UI UI/iTEM

Beta scan with collisions

strong non-linear stabilization

Possible reasons for strong NL stabilization:
-beta increases triplet correlation time [1] -low shear 𝑠 = 𝑥0

𝑞0

𝑑𝑞
𝑑𝑟

= 0.022 facilitates NL energy transfer [2]
[1]: Whelan 2018 PRL 120 175002 [2]: Faber 2018 J. Plasma Phys. 80 905840503

linear stabilization

Qe~Qi

larger beta

𝐐 𝛃=𝟏𝟎−5

𝐐(𝛃=𝟏𝟎−4)

𝐐(𝛃=𝟏𝟎−6)
𝐐(𝛃=𝟏𝟎−5)

QL 1.7 1.1
NL 11.9 1.3

〈𝑘²⊥〉 =
∫ 𝑘⊥

2 |𝜙|²𝑑𝑥𝑑𝑧
∫ |𝜙|²𝑑𝑥𝑑𝑧

larger beta
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collisions
T F

beta T [Exp.] iTEM/TEM

F UI UI/iTEM

Beta scan with collisions

Non-linear simulations, increase of 𝛃𝑒 causes:
→Reduction of fluxes
→Transition from electrostatic to electromagnetic turbulence

A=area



tearing parity
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Nominal beta and collisions:
Microtearing mode (MTM)

MTM: electromagnetic, driven by a/LTe (and to lesser extent by a/Ln)

Linear simulations

collisions
T F

beta T MTM iTEM/TEM

F UI UI/iTEM



Electromagnetic mode
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Effects at the trapped-passing particle boundary

Elongated
A|| structures

𝐁 = 𝑪 𝜵𝒙 × 𝜵𝒚
𝒙 = flux surface label
𝒚 = 𝒒𝜽∗ − 𝝓
𝒛 = arc length along 𝐁

(x,y,z) averaged

collisions
T F

beta T MTM iTEM/TEM

F UI UI/iTEM

Nominal beta and collisions:
Microtearing mode (MTM)

Non-linear simulations
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Nominal beta and collisions:
Microtearing mode (MTM)

Non-linear simulations

Particle flux driven by MTM (𝜔𝑟 < 0) at large scales Mode is very extended along the field line

collisions
T F

beta T MTM iTEM/TEM

F UI UI/iTEM
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Dependence of Qe,em on local magnetic shear:
𝑆 =− 𝑿 ⋅ 𝛻 × 𝑿 = 𝑩 ⋅ 𝛻 𝛻𝜓⋅𝛻𝛼

|𝛻𝜓|²
with 𝑿 = 𝑩 × 𝛻𝜓

|𝛻𝜓|²
[1]

[1]: Helander 2014 Rep. Prog. Phys. 77 087001

Relation to global shear: 〈S〉 =− 4π2 d𝜄
d𝑉

collisions
T F

beta T MTM iTEM/TEM

F UI UI/iTEM

Nominal beta and collisions:
Microtearing mode (MTM)

Non-linear simulations

Dependence on x?
𝒒 𝒙 ≈ 𝒒 𝒙𝟎 + 𝑥 − 𝑥0

𝑑𝑞
𝑑𝑥

|𝑥0 
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Experiment:
𝐀〈𝐐〉 =0.6 MW
𝐀〈𝚪〉 =9.6x1019 1/s
A=area

collisions
T F

beta T
(𝛽𝑒 = 5 × 10−3)

𝐀〈𝐐〉 =0.84 MW
𝐀〈𝚪〉 =4.4x1019 1/s

𝐀〈𝐐〉 =6.7 MW
𝐀〈𝚪〉 =1.1 x1022 1/s

F
(𝛽𝑒 = 1 × 10−6)

𝐀〈𝐐〉 =32.7 MW
𝐀〈𝚪〉 =4.2x1022 1/s

𝐀〈𝐐〉 =25.6 MW
𝐀〈𝚪〉 =3.5x1022 1/s

stabilization
bybeta

Experimentally:
1) Qi can drop to neoclassical levels [1]
2) NBI discharges: separation of Qe and Qi

difficult, since Te~Ti [2].
Within error bars: Q=Qe

[1]: S.A. Bozhenkov et al 2020 Nucl. Fusion 60 066011
[2]: O.P. Ford et al 2024 Nucl. Fusion 64 086067

stabilization by collisions

collisions
T F

beta T MTM iTEM/TEM

F UI UI/iTEM

Nominal beta and collisions:
Microtearing mode (MTM)

Non-linear simulations



„pre-accumulation“ -> likely also
MTM

What causes then the reduction of D
for ne and C6+?
Maybe just a change in cross
phases, i.e. Phi x n?
Certainly: more simulations needed
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Open questions



𝛂𝑀𝐻𝐷 =− 𝑅𝑞2 𝑑𝛽
𝑑𝑟

𝛂𝑀𝐻𝐷 ≈ 𝑞2 𝑅
𝑎

𝛽𝑒
𝑎

𝐿𝑛
 + 𝑎

𝐿𝑇
 (using 𝑛𝑒 = 𝑛𝑖 and 𝑇𝑒 = 𝑇𝑖)
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Back-of-the-envelope calculation of 𝛂MHD for t=2.8 and t=1.5 s

t=2.8 s

𝑎/𝐿𝑛 = 2.36 𝑇𝑖/𝑇𝑒= 1.1
𝑎/𝐿𝑇𝑒 = 1.54 𝛽𝑒 = 5 × 10−3

𝑎/𝐿𝑇𝑖 = 1.9
𝛂𝑀𝐻𝐷 ≈ 2 ⋅ (− 1.14)2 ⋅  10 ⋅ 5 × 10−3 2.36 + 1.54
𝛂𝑀𝐻𝐷 ≈ 0.50

t=1.5 s

𝑎/𝐿𝑛 = 0.98 𝑇𝑖/𝑇𝑒= 1.1
𝑎/𝐿𝑇𝑒 = 1.55 𝛽𝑒 = 4 × 10−3

𝑎/𝐿𝑇𝑖 = 1.12
𝛂𝑀𝐻𝐷 ≈ 2 ⋅ (− 1.14)2 ⋅  10 ⋅ 4 × 10−3 0.98 + 1.55
𝛂𝑀𝐻𝐷 ≈ 0.26 

Note: 𝛂MHD is a figure of merit for pressure-driven instabilities

𝛽𝑒 = 8𝜋𝑛𝑒0𝑇𝑒0
𝐵𝑟𝑒𝑓²

𝛽𝑒 in cgs units
q=-1.14
R/a=10 (W7-X)



Double check:
• (possible) cross-field interaction → FFS simulation
• linearization of safety factor → global simulation

Which is the cheapest, yet good-enough model?
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Limitations of flux tube model



Using GENE, microtearing mode (MTM) has been found in W7-X experimental scenarios which are
• highly density-gradient-driven.
• not so temperature-gradient-driven.
MTM appears to exist in a „sweet region“ of beta, collisionality and moderate/low values of 𝛈𝐢, 𝛈𝐞
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Conclusions

QI + Max-J
+low ηi & 𝜂𝑒

absence of
TEM

+collisions
+beta:
transition

UI/iTEM->MTM

This work, using experimental values

previous understanding ηa = 1
𝑇

𝑑𝑇
𝑑𝑟

/ 1
𝑛

𝑑𝑛
𝑑𝑟
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Back-up slides
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Growth rate dependence on a/LTe,a/Ln
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Growth rate dependence on a/LTi
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Contour plots, comparison with global and linearized safety-
factor profile

Q,e,EM
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Dependence of u||² on |B|(z):
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Dependence of A|| on local shear
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Time trace, beta=T,coll=T, t=2.8 s

gB units
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Universal instability also displays tearing parity
beta=0 beta=1E-6
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A simple figure of merit to quantify excessive || correlation for
stellarators

Beer 1995, PoP

(modified) correlation function. <> means average over x,y
and t. Only non-zonal components (ky=/=0) of phi are used
here

npol=1 npol=8 CBC, with KE, (npol=1, β = 10−4)



Double check:
• (possible) cross-field interaction → FFS simulation
• linearization of safety factor → global simulation

Which is the cheapest, yet good-enough model?
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Limitations of flux tube model


