

Name
Artem
Christian
Daniel
Daniele
Fabien
Frank
Jieshuang
Nikita
Sreenivasa
Valentina
Valentine

Name	
Artem	
Christian	
Daniel	
Daniele	
Fabien	
Frank	
Jieshuang	
Nikita	
Sreenivasa	
Valentina	
Valentine	

Name	
Artem	
Christian	
Daniel	
Daniele	
Fabien	
Frank	
Jieshuang	
Nikita	
Sreenivasa	
Valentina	

Valentine

Connector 6: Cosmic accelerators

Cosmic rays Earth p, e⁻, α ...

Name	Phenomena
Artem	shocks
Christian	turbulence
Daniel	turbulence
Daniele	turbulence
Fabien	turbulence, reconnection
Frank	turbulence, shear
Jieshuang	turbulence, shear
Nikita	turbulence, shear
Sreenivasa	turbulence, reconnection
Valentina	shocks
Valentine	shocks

Name	Phenomena	Objects
Artem	shocks	Earth's bow shock, SNR, AGN
Christian	turbulence	CR, molecular clouds
Daniel	turbulence	Solar wind
Daniele	turbulence	AGN, CR
Fabien	turbulence, reconnection	AGN, accretion
Frank	turbulence, shear	AGN, UHECR, jets
Jieshuang	turbulence, shear	AGN jets, microquasars, UHECR
Nikita	turbulence, shear	AGN jets
Sreenivasa	turbulence, reconnection	Solar wind
Valentina	shocks	Earth's bow shock
Valentine	shocks	SNR, Earth's bow shock

Name	Phenomena	Objects	Methods
Artem	shocks	Earth's bow shock, SNR, AGN	PIC, semi-analytical
Christian	turbulence	CR, molecular clouds	Two-fluid MHD
Daniel	turbulence	Solar wind	Hybrid-GK
Daniele	turbulence	AGN, CR	GRMHD, test particles, GK
Fabien	turbulence, reconnection	AGN, accretion	MHD
Frank	turbulence, shear	AGN, UHECR, jets	semi-analytical
Jieshuang	turbulence, shear	AGN jets, microquasars, UHECR	MHD, test particles
Nikita	turbulence, shear	AGN jets	MHD
Sreenivasa	turbulence, reconnection	Solar wind	Hybrid-GK
Valentina	shocks	Earth's bow shock	MMS data analysis
Valentine	shocks	SNR, Earth's bow shock	PIC

PIC simulation informed modeling of blazar emission

Active Galactic Nuclei (AGN)

AGN is a compact region at the center of a host galaxy that emits a significant amount of energy across the electromagnetic spectrum, which can easily outshine the host galaxy. The most promising candidate is a **supermassive black hole** (SMBH) at the center of the host galaxy.

Emission of Mrk421 + synchrotron self-Compton model

Realistic electron distribution

Emission of Mrk421 + synchrotron self-Compton model

Realistic electron distribution

Emission of Mrk421 + synchrotron self-Compton model

Using realistic electron energy distribution

$$\frac{dn_{\rm e}}{d\gamma}(\gamma) \propto \begin{cases} \mathcal{N}(\gamma,\theta), \ 1 < \gamma < \gamma_{\rm nth} \\ \mathcal{N}(\gamma_{\rm nth},\theta) \left(\frac{\gamma}{\gamma_{\rm nth}}\right)^{-p_1}, \ \gamma_{\rm nth} < \gamma < \gamma_{\rm br}, \\ \mathcal{N}(\gamma_{\rm nth},\theta) \left(\frac{\gamma_{\rm br}}{\gamma_{\rm nth}}\right) e^{\gamma_{\rm br}/\gamma_{\rm cut}} \left(\frac{\gamma}{\gamma_{\rm nth}}\right)^{-p_1-1} e^{-\gamma/\gamma_{\rm cut}}, \ \gamma > \gamma_{\rm br} \end{cases}$$

Where $N(\gamma, \theta) = \frac{\gamma^2}{2\theta^3} e^{-\gamma/\theta}$ is the Maxwell distribution and $\theta \equiv kT_e/m_ec^2$ is the dimensionless temperature.

Using realistic electron energy distribution

$$\frac{dn_{\rm e}}{d\gamma}(\gamma) \propto \begin{cases} \mathcal{N}(\gamma,\theta), \ 1 < \gamma < \gamma_{\rm nth} \\ \mathcal{N}(\gamma_{\rm nth},\theta) \left(\frac{\gamma}{\gamma_{\rm nth}}\right)^{-p_1}, \ \gamma_{\rm nth} < \gamma < \gamma_{\rm br}, \\ \mathcal{N}(\gamma_{\rm nth},\theta) \left(\frac{\gamma_{\rm br}}{\gamma_{\rm nth}}\right) e^{\gamma_{\rm br}/\gamma_{\rm cut}} \left(\frac{\gamma}{\gamma_{\rm nth}}\right)^{-p_1-1} e^{-\gamma/\gamma_{\rm cut}}, \ \gamma > \gamma_{\rm br} \end{cases}$$

Where $N(\gamma, \theta) = \frac{\gamma^2}{2\theta^3} e^{-\gamma/\theta}$ is the Maxwell distribution and $\theta \equiv kT_e/m_ec^2$ is the dimensionless temperature.

Best-fit parameters:

Temperature	$\theta \approx 500$
Nonthermal population	$\gamma_{nth} / \theta \approx 8$
Power-law index	<i>p</i> ¹ ≈ 2.4
Electron density	n ≈ 1 cm ⁻³
Magnetic field	B≈0.05 G

Shock physics

In the simulations reference frame all the upstream kinetic energy goes to: (1) **thermal ions and electrons** (2) high-energy particles (3) fields.

$$a_{\rm th}(\gamma_0 - 1) m_{\rm p} c^2 = (\gamma_{\rm th,e} - 1) m_{\rm e} c^2 + (\gamma_{\rm th,p} - 1) m_{\rm p} c^2$$

Upstream gamma factor and electron temperature

In the simulations reference frame about 80% of the upstream kinetic energy goes to thermal ions and electrons:

$$a_{\rm th}(\gamma_0 - 1) m_{\rm p} c^2 = (\gamma_{\rm th,e} - 1) m_{\rm e} c^2 + (\gamma_{\rm th,p} - 1) m_{\rm p} c^2$$

$$\frac{T_{\rm e}}{T_{\rm p}} = \frac{(\gamma_{\rm th,e} - 1) m_{\rm e} c^2}{(\gamma_{\rm th,p} - 1) m_{\rm p} c^2} \qquad \text{(largely unknown, but here we use } T_{\rm e}/T_{\rm i} \approx 0.5\text{)}$$

$$\gamma_0 = 1 + \frac{3\theta}{a_{\text{th}}} \frac{m_{\text{e}}}{m_{\text{p}}} \left(1 + \frac{T_{\text{p}}}{T_{\text{e}}}\right) \approx 4 \text{ in case of } \theta \approx 500$$

$$\gamma_{\rm sh} = \sqrt{\frac{(\gamma_0 + 1)(\Gamma_{\rm ad}(\gamma_0 - 1) + 1)^2}{\Gamma_{\rm ad}(2 - \Gamma_{\rm ad})(\gamma_0 - 1) + 2}} \approx 5.3$$

Plasma magnetization: plasma density

$$\sigma = \frac{B_0^2}{\mu_0 \gamma_0 n_0 (m_\mathrm{p} + m_\mathrm{e}) c^2}$$

where n_0 and B_0 are the upstream values, however the best fit model gives the downstream values.

The upstream plasma density can be derived using the shock compression ratio $r = \frac{\Gamma_{ad}(\gamma_0+1)}{\gamma_0(\Gamma_{ad}-1)}$ Therefore $n_0 = \frac{n\gamma_0(\Gamma_{ad}-1)}{\Gamma_{ad}(\gamma_0+1)}$

Plasma magnetization: magnetic field

$$\sigma = \frac{B_0^2}{\mu_0 \gamma_0 n_0 (m_\mathrm{p} + m_\mathrm{e}) c^2}$$

 $B_0 = B/a_B$, where a_B represents magnetic field amplification in front of the shock, compression in the shock and decay behind the shock

Plasma magnetization

$$\sigma = \frac{(B/a_{\rm B})^2}{\mu_0 \gamma_0 n(m_{\rm i} + m_{\rm e})c^2} \frac{[\gamma_0(\Gamma_{\rm ad} - 1)]}{(\Gamma_{\rm ad} \gamma_0 + 1)}$$

$$\sigma \sim 0.15/a_{
m B}^2$$
 (for the best-fit model)

Shock parameters for the best-fit model

Best-fit parameters:

Temperature	<i>θ</i> ≈ 500
Nonthermal population	γ _{nth} /θ ≈ 8
Power-law index	<i>p</i> ₁ ≈ 2.4
- 1 / 1/	4

Electron density $n \approx 1 \ cm^{-3}$ Magnetic field $B \approx 0.05 \ G$

Shock parameters:

The upstream Lorentz factor in d.r.f. $\gamma_0 \approx 4$ The shock Lorentz factor $\gamma_{sh} \approx 5.3$ Magnetization $\sigma \approx 0.15/a_B$

Assumptions:

Fraction of energy in thermal particles Downstream temperature ratio Magnetic field amplification $a_{th} \approx 0.8$ T_e/T_i ≈ 0.5 a_B is a free parameter

Shock parameters for the best-fit model

MA RO

Best-fit parameters:

Temperature	<i>θ</i> ≈ 500
Nonthermal population	γ _{nth} /θ ≈ 8
Power-law index	<i>p</i> ₁ ≈2.4

Electron density	n ≈ 1 cm ⁻³
Magnetic field	B≈0.05 G

Shock parameters:

The upstream Lorentz factor in d.r.f. $\gamma_0 \approx 4$ The shock Lorentz factor $\gamma_{sh} \approx 5.3$ Magnetization $\sigma \approx 0.15/a_B$

Assumptions:

Fraction of energy in thermal particles Downstream temperature ratio Magnetic field amplification

 $a_{th} \approx 0.8$ T_e/T_i ≈ 0.5 a_B is a free parameter

Things to test with PIC simulations

(1) Short simulations

Downstream temperature ratio T_e/T_i Fraction of energy in thermal particles a_{th}

(2) Long simulations

Nonthermal population	γ _{nth} /θ
Power-law index	p_1
Magnetic field amplification	a _B

Conclusions

(1) Connection of nonthermal emission and PIC simulations is possible (paper was submitted)

(2) A lot of simulations needed to determine T_e/T_i , a_{th} , γ_{nth}/θ , p_1 , a_{th}

Thank you

Dr. Artem Bohdan

Max Planck Institute for Plasma Physics Tokamak Theory division Plasma Astrophysics group artem.bohdan@ipp.mpg.de