
Uwe Hernandez Acosta (CASUS/HZDR) - January 9th, 2025

Julia - a programming language

Introduction
Uwe Hernandez Acosta
• Particle physicist by training

• PhD in Physics 2021 at TU Dresden/HZDR

• Topic: Strong field QED

• Affiliation: Center of Advanced Systems Understanding

• Research interests:

• Theoretical particle physics/Quantum Field Theory

• Strong field physics

• X-ray diagnostics in matter under extreme conditions

• Monte-Carlo Event Generation

• Julia programming language

Survey says!

Survey says!
• I am able to write something useful in a scripting/interpreted programming

language. (something like Python, R, Octave, Matlab, Shell, Javascript, Ruby,
etc.)

•

Survey says!
• I am able to write something useful in a scripting/interpreted programming

language. (something like Python, R, Octave, Matlab, Shell, Javascript, Ruby,
etc.)

• I can write competitive programs in one these scripting languages. (e.g. in
Python, competitive means, you know what a meta-class is)

•

Survey says!
• I am able to write something useful in a scripting/interpreted programming

language. (something like Python, R, Octave, Matlab, Shell, Javascript, Ruby,
etc.)

• I can write competitive programs in one these scripting languages. (e.g. in
Python, competitive means, you know what a meta-class is)

• I can write something useful in a systems-level programming language. (e.g.
C, C++, Fortran, Rust, Go, Kotlin, Java, etc.)

•

Survey says!
• I am able to write something useful in a scripting/interpreted programming

language. (something like Python, R, Octave, Matlab, Shell, Javascript, Ruby,
etc.)

• I can write competitive programs in one these scripting languages. (e.g. in
Python, competitive means, you know what a meta-class is)

• I can write something useful in a systems-level programming language. (e.g.
C, C++, Fortran, Rust, Go, Kotlin, Java, etc.)

• I can write competitive code in one of these systems-level languages. 
(e.g. in C++, competitive means, you can write a template class without
getting mad)

Survey says!
• I am able to write something useful in a scripting/interpreted programming

language. (something like Python, R, Octave, Matlab, Shell, Javascript, Ruby,
etc.)

• I can write competitive programs in one these scripting languages. (e.g. in
Python, competitive means, you know what a meta-class is)

• I can write something useful in a systems-level programming language. (e.g.
C, C++, Fortran, Rust, Go, Kotlin, Java, etc.)

• I can write competitive code in one of these systems-level languages. 
(e.g. in C++, competitive means, you can write a template class without
getting mad)

• I can write library code in one of these systems-level languages. (e.g. you are
one of the authors of Boost)

•

• Efficiency

• Fast execution

• High data throughput

• Scalability

• Developer-friendly

• Quick bug fixes

• Newest algorithms implemented

• Good tooling

• User-friendly

• Rapid development cycles

• Low entry points

• Interactivity

Software requirements in HEP

 [Ousterhout. "Re: Why you should not use Tcl" 1994] [Ousterhout. IEEE Computer magazine 31.3 (1998)]

" [I propose that] you should use *two* languages for large software
system: one, such as C or C++, for manipulating the complex internal
data structures where performance is key and another, such as Tcl, for
writing small-ish scripts that tie together the C pieces and are used for
extensions."

Why is this problematic?
The two languages problem annoyance

• Rewriting parts == refactoring

• Different languages == different logics

• Need for glue code

• Extending is a mess

• Debugging is a mess

• Scientists need to be polyglot

• Multithreading? Anyone?

Established Solutions*?

*personal opinion

… only systems-level languages?

• Take years to learn…

• …decades to master

• Boilerplate code

• Hardware specific

• Mostly non-interactive

• Missing tools/libraries

Why not use …

… third-party libraries?

• “Use C/C++ under the hood”

• Valid in their scope

• Hard to do something outside
the box

• Interoperability? Anyone?

• The vendor decides what is
performance-critical

Why not use …

… Numba, PyPy, Pythran, etc?

• Sufficient for small code pieces

• These are second languages

• Support only a subset of the host
language(s) …

• … and/or add new commands/
logic/concepts

• Usually not a systems-level language

• e.g Numba is neither Python nor C

Why not use …

Proposal of a solution

Introduction

• Invented 2012 at MIT (mostly)

• Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan
Edelman

• Design goals

• Open source

• Speed like C, dynamic like Ruby

• Obvious mathematical notation

• General purpose like Python

• As easy for statistics as R

• Powerful linear algebra like in Matlab

• Good for gluing programs together like the shell

The Julia programming language

"Something that is dirt simple to learn, yet keeps the most serious hackers happy."
[Bezanson, Karpinski, Shah, Edelman - "Why We Created Julia" (2012)]

Ease of use
• Dynamically typed

• Powerful type system

• Garbage collection

• Extensive standard library

• Mostly written in Julia

• Math included

• Performant

• Multiple dispatch for the win!

Julia is easy
using DifferentialEquations, Measurements, Plots

g = 9.79 ± 0.02; # Gravitational constants
L = 1.00 ± 0.01; # Length of the pendulum

#Initial Conditions
u₀ = [0 ± 0, π / 60 ± 0.01] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function pendulum(du,u,p,t)
 θ = u[1]
 dθ = u[2]
 du[1] = dθ
 du[2] = -(g/L)*θ
end

#Pass to solvers
prob = ODEProblem(pendulum, u₀, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-6)

Analytic solution
u = u₀[2] .* cos.(sqrt(g / L) .* sol.t)

plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")

You can write Julia code as far away
from the metal as you want!

Not an interpreter

• Just-ahead-of-time compiler

• LLVM empowered

• Statically sizes arrays

• Built-in vector/matrix types

• Arbitrary optimization

• Compiler reflections available

• Native thread support

Julia is fast

GPU performance

Taken from [Besard et al. IEEE Trans. Parallel Distrib. Syst. 30.4 (2018)]

CPU performace

Data taken from [https://julialang.org/benchmarks/]

You can write Julia code as close to
the metal as you want!

Development tooling
Julia is a modern language

Testing (integrates with Pkg.jl)

Packaging system

Package manager (Pkg.jl)

Documenter.jl

Project.toml

Rich eco-system
>10k packages

Plots.jl Makie.jl PGFPlots.jl

Visualization
JuliaData JuliaStats

Data and Statistics

Pluto.jl IJulia.jl

Notebooks

Machine learning

MJL.jl Flux.jl

JuliaDiffSciML

JuliaGPU

GPU support

CUDA.jl

AMDGPU.jl

oneAPI.jl

Metal.jl

KernelAbstractions.jl

Turing.jl

JuliaInterop

CxxWrap.jl

PyCall.jl

RCall.jl

MathLink.jl

Interoperability

Julia implementations/wrapperFile formats/standards

Loading data
HEP data formats

Les Houches Event Format LCIO
UpROOT.jl

RootIO.jl

Arrow.jl

HDF5.jl

JLD2.jl

LHEF.jl

LCIO.jl

openPMD.jl

Drawbacks of using Julia?

Julia should be better
or shouldn’t it?

• Formatter/Linter/LSP could
be better

• Little scripts*

• Startup time*

• Vendor lock

• Only LLVM and Clang

• Only one reference
implementation

• Building binaries*

• Calling Juila from other Languages*

• Context-based programming*

• Cumbersome static performance
prediction

• Cumbersome static analysis/
checking*

*solved (kinda)

Julia in the wild

Memory bandwidth benchmarks
Data throughput

STREAM benchmark up to 64 AMD CPU cores

LoC: 378 (C) vs 156 (Julia)

Intra-node performance

MPI broadcasting benchmark: 36 × 32 processes

Inter-node performance

Taken from [S. Hunold and S. Steiner, 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)]

Single-thread axpy benchmarks on Fugaku (A64FX)
Single-node performace

Single precision Double precision

Taken from [M Giordano, M Klöwer, V Churavy 2022 IEEE International Conference on Cluster Computing (CLUSTER), 2022]

function axpy!(a::T, x::Vector{T}, y::Vector{T}) where {T<:Number}
 @simd for i in eachindex(x, y)
 @inbounds y[i] = muladd(a, x[i], y[i])
 end
 return y
end

https://scholar.google.com/citations?user=dCq79A4AAAAJ&hl=de&oi=sra
https://scholar.google.com/citations?user=3hZhbucAAAAJ&hl=de&oi=sra

Celeste.jl project
Julia on scale

• 2017 at NERSC (Berkley)

Analysis of telescope data

Inferred parameters of stars

Done in

 threads on 650.000 Intel Xeon Phi cores

 peak performance

178 TB

1.88 × 108

14.6 min

1.3 × 106

1.54 PFLOPS

Taken from [J. Regier, et al., Journal of Parallel and Distributed Computing 127 (2019): 89-104]

Community efforts
JuliaHEP working group in the HEP software foundation

• Founded around 2014

• facilitate coordination and common efforts in
HEP software and computing

• Objectives

• Share expertise

• Raise awareness

• Catalyse new common projects

• Promote collaborations in new
developments

• Provide training

• …

•

HEP software foundation
hepsoftwarefoundation.org

• HSF working group founded in 2022

• JuliaHEP annual workshop

• 2023: ECAP in Erlangen

• 2024: CERN

• Monthly community calls

• Monitoring/Supporting development

• Tutorial material + example project

JuliaHEP @ HSF
juliahep.org

github.com/JuliaHEP #hep

http://juliahep.org

Next JuliaHEP
workshop
July 28 - 31, 2025
Princeton University

Abstract submissions are now open!

Backup

Native Threading support

• Support for OpenMP-like models

• Parallelization of loops

• Support for M:N threading

• M user threads are mapped
onto N kernel threads

• Support for task migration

• Tasks can be started,
suspended, and resumed again

Parallel computing

Taken from [https://blog.glcs.io/parallel-processing]

https://blog.glcs.io/parallel-processing

Function and methods
Multiple dispatch

f(::Any, ::Number)

f(::T, ::T) where {T<:Number}

f(::Int64, ::Int64)

f(::String, ::Any)

Float64<:AbstractFloat<:Real<:Number<:Any

String

Int64

Float64

String Int64 Float64

Reproduced from [https://scientificcoder.com/the-art-of-multiple-dispatch]

https://scientificcoder.com/the-art-of-multiple-dispatch

Expressiveness
Multiple dispatch II

Reproduced from [S. Karpinski, “The unreasonable effectiveness of multiple dispatch”, JuliaCon2019]

Dispatch
degree Syntax Dispatched on Selection power

None f(x,y,z) { } 1

Single x.f(y,z) {x} |X|

Multiple f(x::X,y::Y,z::Z) {x,y,z} |X|⋅|Y|⋅|Z|

Unreasonable effectiveness

• Allows generic code based on
abstract types

• Allows arbitrary optimization

• Orthogonal development

• Solves the expression problem

Multiple dispatch III
using DifferentialEquations, Plots

g = 9.79 # Gravitational constants
L = 1.00 # Length of the pendulum

#Initial Conditions
u₀ = [0, π / 60] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function pendulum(du,u,p,t)
 θ = u[1]
 dθ = u[2]
 du[1] = dθ
 du[2] = -(g/L)*θ
end

#Pass to solvers
prob = ODEProblem(pendulum, u₀, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-6)

Analytic solution
u = u₀[2] .* cos.(sqrt(g / L) .* sol.t)

plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")

Unreasonable effectiveness

• Allows generic code based on
abstract types

• Allows arbitrary optimization

• Orthogonal development

• Solves the expression problem

Multiple dispatch III
using DifferentialEquations, Measurements, Plots

g = 9.79 ± 0.02; # Gravitational constants
L = 1.00 ± 0.01; # Length of the pendulum

#Initial Conditions
u₀ = [0 ± 0, π / 60 ± 0.01] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function pendulum(du,u,p,t)
 θ = u[1]
 dθ = u[2]
 du[1] = dθ
 du[2] = -(g/L)*θ
end

#Pass to solvers
prob = ODEProblem(pendulum, u₀, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-6)

Analytic solution
u = u₀[2] .* cos.(sqrt(g / L) .* sol.t)

plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")

Everything is wrapped

• Use foreign code from Julia

• Wrapit and CxxWrap.jl for (semi-) automatic building
of bindings

• non-exhausted list of wrapped libraries

• Geant4.jl

• ROOT.jl

• XRootD.jl

• Pythia8.jl

• FastJet.jl

• UpROOT.jl

• Etc.

Interoperability and Legacy code

JuliaInterop

CxxWrap.jl

PyCall.jl

RCall.jl

MathLink.jl

Interoperability

Example for rewriting

• Sequential jet clustering

• Algorithms from FastJet

• Fully written in Julia

• Visualization included

• Lesson learned

• Better ergonomics

• Better tooling

• Neat visualization

• More flexible usage

JetReconstruction.jl

QuantumElectrodynamics.jl
Interfaces and tools available

• Particles

• Lorentz Vectors

• Phase space points

• Computational models

• Scattering processes

• Particle distributions

• Laser fields

• Event generation

e− + laser → e− + γ

e− + laser → e− + (e+e−)

