

OVERVIEW

•	Features	of the	HPC	Cloud
---	-----------------	--------	-----	-------

- Compute
 - Images
 - Flavors
 - Server Groups
- → Volumes, i.e. Block storage
- → Network
 - Networks
 - Security Groups
 - Load Balancers (not discussed)
 - Floating IPs (not discussed)
- Orchestration
- → Object storage
- → Shares, i.e. shared file systems

Recipes for the HPC Cloud

- → Kubernetes (MoM)
- → SLURM (JADE)
- → Workstations
- → VPN (?)

Services based on HPC Cloud

Notebooks:

 BinderHub & JupyterHub

 GitLab runners
 Virtual cluster

 Example: remote visualization service (RVS)

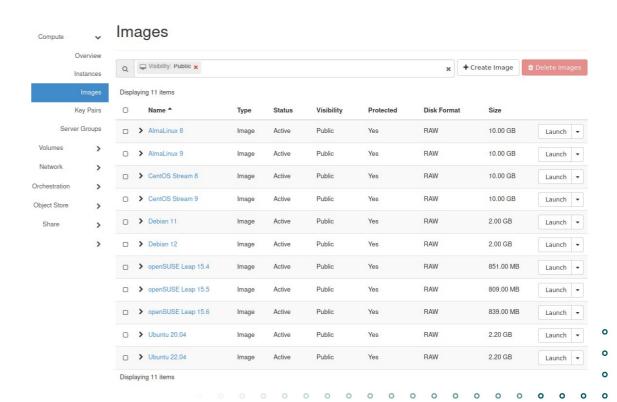
 Open Build Service (OBS)

OVERVIEW

- → Compute
 - Images
 - Flavors
 - Server Groups
- → Volumes, i.e. Block storage
- → Network
 - Networks
 - Security Groups
 - Load Balancers (not discussed)
 - Floating IPs (not discussed)
- → Orchestration
- → Object storage
- → Shares, i.e. shared filesystems

Recipes for the HPC Cloud

- → Kubernetes (MoM)
- → SLURM (JADE)
- Workstations
- → VPN (?)


Services based on HPC Cloud

- Notebooks:
 - BinderHub & JupyterHub
- GitLab runners
- Virtual cluster
 - Example: remote visualization service (RVS)
- Open Build Service (OBS)

FEATURES → COMPUTE → IMAGES

- EL-Like:
 - → Alma
 - → Centos
 - → RHEL (BYOL)
- Debian-like
 - → Debian
 - → Ubuntu
- SUSE-like
 - → OpenSUSE
 - → SLES (BYOL)
- Wishlist?
 - → OS's: Arch, Container OS's, Windows
 - → Local repo mirrors / regular updates
 - → Pre-installed "appliances" (e.g. Prometheus)

- OS versions removed at EOL
- Updates are manual / irregular

FEATURES → COMPUTE → FLAVORS

- Defined by mapping to hardware
- Shared (default):
 - → Two VCPUs share a physical CPU
- Dedicated (on request):
 - → VCPUs are pinned to physical CPUs
- Devices
 - → GPUs: A30/A40, A100, H100
 - → NVMe: 1.8 TB & 3.6 TB
- Wishlist:
 - → GPU flavor sizing??
 - → Hyper-threaded flavors

RAM per VCPU [GiB]

	shared	dedicated
standard	4	6.7
high	8	
extreme	16	30

Maximum size

	shared	dedicated	whole-node	0
standard	64c256g	36c240g	72c480g	0
high	64c512g			0
extreme	32c512g	32c960g	64c1920g	0

FEATURES → COMPUTE → SERVER GROUPS

Hint to the OpenStack scheduler

o server group create demo --policy soft-affinity
O server create demo --server-group demo ...

policy effect

soft-affinity soft-anti-affinity

Attempt to schedule instances near each other, for example on the same hypervisor

Attempt to schedule instances on different hardware, for example separate racks

FEATURES → VOLUMES

- Block storage provided by Ceph
- Three variants:
 - 1) Ceph
 - 2) CephSSD
 - 3) CephIntensive
- Little difference in performance
- Faster block devices
 - → Flavors with NVMe
- Wishlist
 - → NVMeOF (?)

- Volume as root disk
 - → Create a volume from an image
 - Mark the volume "bootable"
 - Create server from the volume

- Multi-attach volumes
 - → Available on request
 - Must set up parallel file system

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FEATURES → NETWORK → NETWORKS

- Networks shared by all projects
 - → cloud-local-1
 - very full
 - → cloud-local-2
 - full
 - → cloud-local-3
- Public IPs
 - → cloud-public
- You can define private networks
 - → Network
 - → Subnet
 - Router

- Special networks for shares
 - → Access given on request

- o network create NETWORK
- o subnet create SUBNET \
 - --network NETWORK \
 - --subnet-range 192.168.0.0/24 \
 - --dns-nameserver 130.183.9.32 \
 - --dns-nameserver 130.183.1.21
- o router create ROUTER
- o router set ROUTER --external-gateway cloud-public
- o router add subnet ROUTER SUBNET

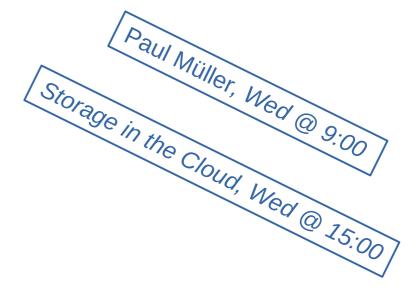
FEATURES → NETWORK → SECURITY GROUPS

- Firewall rules
- We setup up three for you
 - → default
 - → web
 - → web-campusonly
- Notes on default group
 - → Allows ingress from your hosts
 - → Blocks ingress from other projects
 - Allows SSH from campus

- AutoDNS:
 - DNS entry for FIPs and Servers
 - → Runs every 5 minutes
 - → Servers:

VM_NAME.PROJECT_NAME.hpccloud.mpg.de

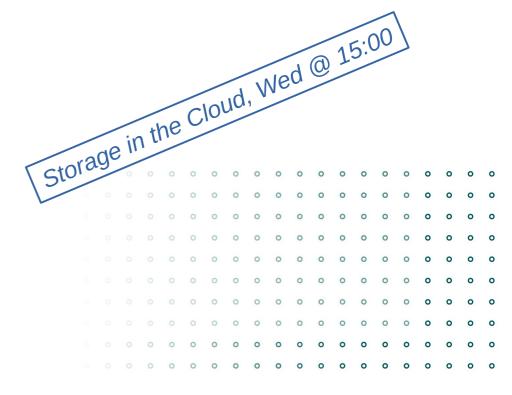
→ FIPs:


FIP_DESCRIPTION.PROJECT_NAME.hpccloud.mpg.de

- Certificates
 - → CertBot & Let's Encrypt
 - CA of your choice

FEATURES → OBJECT STORAGE

- Addressing the storage
 - → S3: Amazon's protocol
 - de facto standard
 - → SWIFT: OpenStack protocol
- Credentials issues by OpenStack
 - → Provide full access to project space
- Globally accessible
- Wishlist:
 - → How to make this useful to you?


- Share content
 - → Handle access control in separate application
 - Generate links with temporary access tokens

FEATURES → SHARES

- Shared file system as a service
- Three flavors:
 - → NexusPOSIX
 - Native on HPCs
 - Configured for large data files
 - Uses MPCDF user & group IDs
 - Projects can be exported to cloud via NFS
 - → Manila & NFS
 - Easy to set up
 - Widely compatible
 - Low performance (bottleneck)
 - → Manila & CephFS
 - Requires compatible client
 - More configuration
 - Good performance

- Wishlist:
 - → Recipes / examples (?)

FEATURES → ORCHESTRATION

HEAL

- Defined in yaml
- State tracked in OpenStack
- Example: Kubernetes (MoM)

Terraform

- Defined in hcl
- State local to client
 - → Shared state via GitLab
- Example: SLURM (JADE)

- Define compute, storage, and network infrastructure as code
- Collaborate, reproduce, or share systems of compute resources

Infrastructure

FRANK BERGHAUS

MPCDF

MPCDF HPC CLOUD

SEP 10, 2024

OVERVIEW

	F	e	a	tu	ıre	25	5	of	tl	7	е	\vdash	16	C	C	Ιοι	ıd	

- Compute
 - Images
 - Flavors
 - Server Groups
- → Volumes, i.e. Block storage
- → Network
 - Networks
 - Security Groups
 - Load Balancers (not discussed)
 - Floating IPs (not discussed)
- Orchestration
- Object storage
- → Shares, i.e. shared filesystems

Recipes for the HPC Cloud

- → Kubernetes (MoM)
- → SLURM (JADE)
- → Workstations
- → VPN (?)

Services based on HPC Cloud

- → Notebooks:
 - BinderHub & JupyterHub
- GitLab runners
- Virtual cluster
 - Example: remote visualization service (RVS)
- → Open Build Service (OBS)

RECIPES → KUBERNETES (MOM)

MoM Recipe:

gitlab.mpcdf.mpg.de/mpcdf/cloud/kubernetes

- Two branches:
 - → production:
 - Meant to host productive services
 - Three control plane nodes
 - Problem: warnings from etcd
 - → test:
 - Meant to try out Kubernetes
 - Single control plane

- Use:
 - → Notebooks
 - Many projects, at the workshop:
 - Flaski
 - Nomad
 - SciServer
- Wishlist
 - Improve existing recipe
 - → Other deployment options (?)
 - Magnum
 - Rancher
 - ClusterAPI

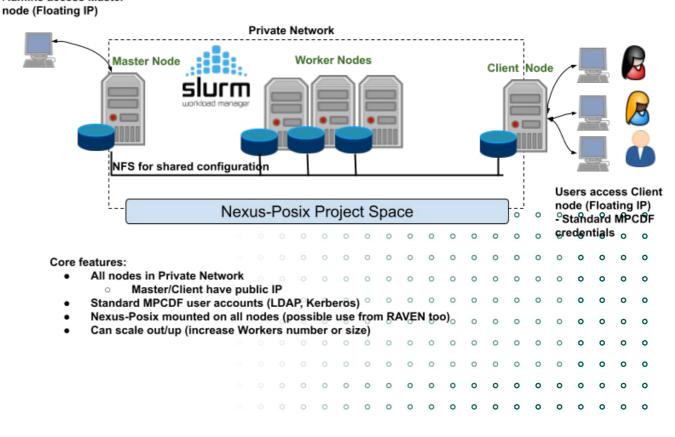
.

FRANK BERGHAUS

MPCDF

MPCDF HPC CLOUD

SEP 10, 2024


→ gitlab.mpcdf.mpg.de/mpcdf/cloud/jade

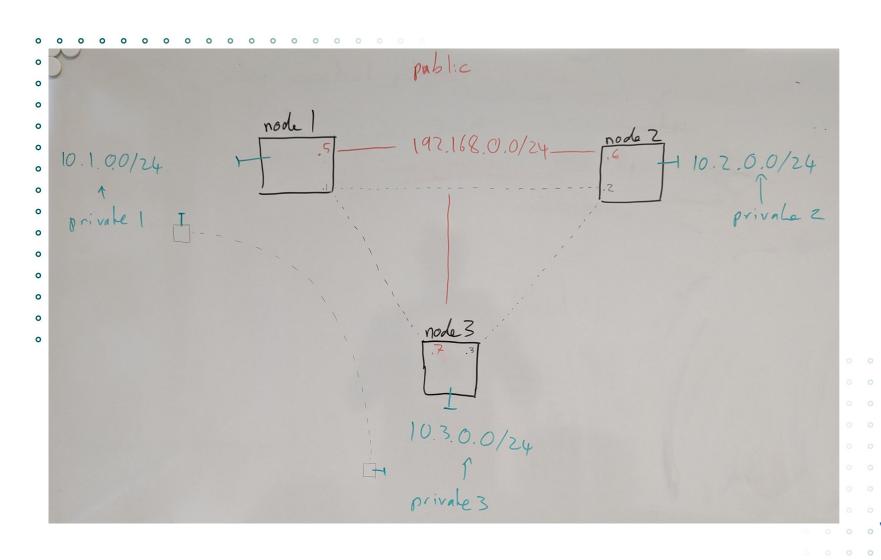
Slurm Cluster in the Cloud

- → Full control of your cluster config and software environment
- → Shared Storage on NexusPOSIX
 - Also mounted on Raven or Cloud VMs
- → Good for single-node workloads
- Terraform based
 - Scale out/in easily
 - Cleanly spin up or tear down clusters

JADE: High-level architecture

Admins access Master

RECIPES → WORKSTATIONS


Workstations in the cloud

- → High degree of control over infrastructure
 - Size of VM
 - Storage
- → Local or MPCDF Accounts (LDAP)
- → NexusPOSIX mount possible
- → Ideal for long running post processing jobs
 - Production on Raven, data store in NexusPOSIX, post processing on workstation
- → Possible mount of block storage volumes
- → Full control over software environment
- → Remote Desktop (VNC)
- → Access via SSH through Gateways

FRANK BERGHAUS | MPCDF | MPCDF HPC CLOUD | SEP 10, 2024 | 16

RECIPES → VPN (?)

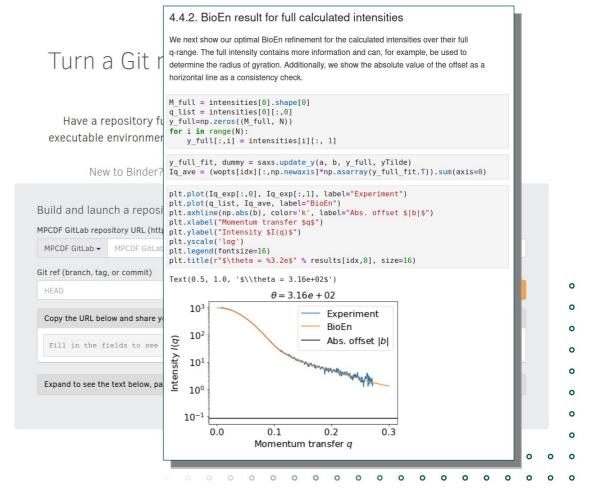
- WIP Example:
 - gitlab.../fberg/vpn-demo
- Wishlist:
 - → Recipe (WG mesh)
 - → OpenStack VPNaaS
- Interest (?)

Maurits & simeon, Tue

OVERVIEW

- Features of the HPC Cloud
 - Compute
 - Images
 - Flavors
 - Server Groups
 - Volumes, i.e. Block storage
 - → Network
 - Networks
 - Security Groups
 - Load Balancers (not discussed)
 - Floating IPs (not discussed)
 - Orchestration
 - Object storage
 - → Shares, i.e. shared file systems

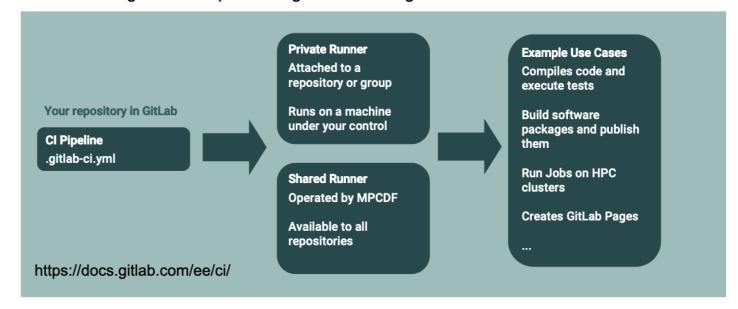
- Recipes for the HPC Cloud
 - → Kubernetes (MoM)
 - → SLURM (JADE)
 - Workstations
 - → VPN (?)


- Services based on HPC Cloud
 - → Notebooks:
 - BinderHub & JupyterHub
 - → GitLab runners
 - → Virtual cluster
 - Example: remote visualization service (RVS)
 - → Open Build Service (OBS)

SERVICES → NOTEBOOKS

- Service:
 - notebooks.mpcdf.mpg.de/binder
- Binder:
 - → Run notebooks from git repo
 - → Restricted to MPCDF GitLab
- JupyterHub
 - Create JupyterHubs for projects
 - → e.g. Workshops
- Wishlist
 - Authentication
 - EduGAIN for Binder
 - → Plugin to Storage (?)

SERVICES → GITLAB RUNNERS


Service:

→ gitlab.mpcdf.mpg.de

- Run CI/CD jobs
 - → Shared runners
 - → Group/projects runners

GITLAB CONTINOUS INTEGRATION

Automatic integration and processing of code changes

Managed SLURM cluster

- → For large projects
 - Solution provided by MPCDF Cluster team on demand when fitting
- → Caveats:
 - Bound to MPCDF accounts
 - Limited customization
- Examples:
 - → FHI General
 - → Pirol
 - → Robin / RVS
- Alternative:
 - → SLURM (JADE) recipe
 - → Build your own from scratch

SERVICES → OPEN BUILD SYSTEM

- Internal project
- Builds software for HPC systems

0

MPCDF HPC CLOUD

MPCDF | MPCD

SEP 10, 2024

22

FRANK BERGHAUS

WRAP UP

•	Features	of the	HPC	Cloud
---	-----------------	--------	------------	-------

- Compute
 - Images
 - Flavors
 - Server Groups
- → Volumes, i.e. Block storage
- → Network
 - Networks
 - Security Groups
 - Load Balancers (not discussed)
 - Floating IPs (not discussed)
- Orchestration
- → Object storage
- → Shares, i.e. shared file systems

Recipes for the HPC Cloud

- → Kubernetes (MoM)
- → SLURM (JADE)
- → Workstations
- → VPN (?)

Services based on HPC Cloud

Notebooks:

 BinderHub & JupyterHub

 GitLab runners
 Virtual cluster

 Example: remote visualization service (RVS)

 Open Build Service (OBS)

FRANK BERGHAUS | MPCDF | MPCDF HPC CLOUD

THANK YOU