PIC Simulations 1 Tutorial lecture

Yohei Miyake^{1*} and Yoshiharu Omura² 1. Kobe University, Japan, 2. Kyoto University, Japan * y-miyake@eagle.kobe-u.ac.jp

> 15th International School for Space Simulations (ISSS-15), Aug 1, 2024, @Garching, Germany

Space plasma

2

• 4th state of matter

•So hot: atoms split up into electrons & ions

• Quasi-neutral: same numbers of e & i

•Electrons & ions moving independently • Dynamics influenced by electromagnetic forces •Plasma current generates electromagnetic field •Exhibiting "collective" behaviors

Collective effects in shortest spatio-temporal scales ➢Debye shielding ➢Plasma oscillation

(electron) Plasma frequency:

$$
\omega_{pe} = \sqrt{\frac{n_{\rm e}e^2}{m_{\rm e}\varepsilon_0}}
$$

Behavior as "plasma" manifests on spatio-temporal scales larger than these characteristic quantities.

Criteria for plasmas

Criterion 1: <u>System scales should be greater than λ_D in space and than ω_{pe}^{-1} in time.</u>

Criterion 2: Debye sphere should contain large number of particles. …coming from the condition that the potential energy by a nearest particle should be much smaller than the particle's kinetic energy ("weakly-coupled").

Particle-in-Cell (PIC) simulations

Design of "plasma behavior" in PIC code

Plasma criterion 2: Debye sphere must contain large number of particles. …request us to solve huge particles

→ Computationally too expensive!

Solution 1: use of a computational particle that combine many real-world particles into one.

Caveat: a small number of particles with larger charge causes too large electrostatic interactions between the particles.

Solution 2: use of a "thick" particle or a "charge-cloud" particle, to reduce short-range inter-particle collisions. **This is often referred to as a "super-particle".**

 $\boldsymbol{\nu}$

Collisionless nature of super-particles

Numerical procedures of PIC simulations

Maxwell's equations $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \frac{1}{c^2} \frac{\partial \boldsymbol{E}}{\partial t}$ $\nabla \times \bm{E} = - \frac{\partial \bm{B}}{\partial t} .$ $\nabla \cdot \bm{E} = \frac{\rho}{\varepsilon_o}$ $\nabla \cdot \boldsymbol{B} = 0$ where $\varepsilon_0 \mu_0 = \frac{1}{c^2}$

Centered difference scheme

Define $u_i = u(x_i)$. Then, Taylor-expand $u_{i+1/2}$ and $u_{i-1/2}$ around x_i .

$$
u((i+1/2)\Delta x) = u_{i+1/2} = u_i + \frac{\Delta x}{2} \left(\frac{\partial u}{\partial x}\right)_i + \frac{1}{2!} \left(\frac{\Delta x}{2}\right)^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_i + \frac{1}{3!} \left(\frac{\Delta x}{2}\right)^3 \left(\frac{\partial^3 u}{\partial x^3}\right)_i + \cdots
$$

$$
u((i-1/2)\Delta x) = u_{i-1/2} = u_i - \frac{\Delta x}{2} \left(\frac{\partial u}{\partial x}\right)_i + \frac{1}{2!} \left(\frac{\Delta x}{2}\right)^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_i - \frac{1}{3!} \left(\frac{\Delta x}{2}\right)^3 \left(\frac{\partial^3 u}{\partial x^3}\right)_i + \cdots
$$

Subtraction of each other gives

$$
u_{i+1/2} - u_{i-1/2} = \Delta x \left(\frac{\partial u}{\partial x}\right)_i + \frac{2}{3!} \left(\frac{\Delta x}{2}\right)^3 \left(\frac{\partial^3 u}{\partial x^3}\right)_i + \cdots
$$

where, $\Delta x = x_i - x_{i-1}$.

Centered difference expression

$$
\left(\frac{\partial u}{\partial x}\right)_i = \frac{u_{i+1/2} - u_{i-1/2}}{\Delta x} + O(\Delta x^2)
$$

$$
\sim \frac{u_{i+1/2} - u_{i-1/2}}{\Delta x}
$$

Example of grid assignment (1D along x-axis)

Examples of grid assignment (2D & 3D)

Numerical procedures of PIC simulations

- Memory allocation
- Particle initialization
- Field initialization

Job completion **Diagnostics**

Current density in 1D system along x -axis

- \bullet J_v , J_z components: area-weighting method (same as charge density)
- \bullet I_x computed based on the area-weighting does NOT satisfy charge continuity equation: $\frac{d\rho}{dt}$ $\mathrm{d}t$ $= -\nabla \cdot \bm{J} = \partial J_{\mathcal{X}}$ ∂x …(1)
	- \rightarrow cause an accumulative error in an electrostatic (ES) field.
- ◆Solution 1: Correcting an ES field every time step
	- 1. Define charge ρ_c associated with error in ES field : $\rho_c = \rho \nabla \cdot \vec{E}$
	- 2. Solve Poisson's equation: $\nabla^2 \phi_c = -\rho_c$, for ϕ_c : electric potential
	- 3. Compute ES field correction: $\mathbf{E}_c = -\nabla \phi_c$
	- 4. Add \bm{E}_c to $\bm{E}.$
- ◆Solution 2: Using a "Charge Conservation Method (CCM)" to compute current, which satisfies (1) in the machine accuracy.

Charge conservation method in 1D (J_x): case 1

16

Charge conservation method in 1D (J_x) : case 2

Charge conservation methods in higher dimensions

Trajectory decomposition needed in case the particle moves across cell edges; various approaches proposed.

Numerical procedures of PIC simulations

Update of velocity: Buneman-Boris method

Relativistic equation of motion

$$
\frac{\frac{d}{dt}(m\boldsymbol{v}) = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}
$$
\n
$$
\boldsymbol{u} = \frac{c}{\sqrt{c^2 - |\boldsymbol{v}|^2}} \boldsymbol{v}
$$
\n
$$
\boldsymbol{B}_u = \frac{c}{\sqrt{c^2 + |\boldsymbol{u}|^2}} \boldsymbol{B}
$$
\n
$$
\frac{\frac{d\boldsymbol{u}}{dt} = \frac{q}{m_0} (\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B}_u)}{\sqrt{c^2 + |\boldsymbol{u}|^2}} \boldsymbol{B}
$$

$$
\boldsymbol{v}=\frac{c}{\sqrt{c^{2}+\left|\boldsymbol{u}\right|^{2}}}\boldsymbol{u}
$$

Numerical procedures of PIC simulations

Particle

Initialization

Diagnostics

- Variable definition
- Memory allocation
- Particle initialization
- Field initialization

J, J, ρ J, ρ Update of EM-field Update of particle velocities/positions $\mathrm{d}(m_i\mathbf{v}_i)$ dt $= q_i (E + v_i \times B)$ dx_i dt $= v_i$ -**Main loop** $\overline{\Delta t}$ Particle to Field Field to Particle Job completion

 E, B E, B

E, *B*

E, *B E*, *B*

—
—

Particle

 J, ρ

 $\nabla \times E = -$

 $\nabla \times \boldsymbol{B} =$

 $\nabla \cdot \bm{E} = \frac{\rho}{c}$

or

 $\partial \bm{B}$

 ∂t

 $\partial \bm{E}$

J,

 $\frac{\partial}{\partial t} + \mu_0$ **J**

in ES approx.

1

 $c²$

 ε_0

Field interpolation to particle position

Electrostatic self-force cancellation

$$
\rho_{i} = \frac{1}{\Delta x} \sum_{j}^{N_{p}} q_{j} \frac{W(x_{j} - X_{\overline{u}})}{E_{x,i+1/2} - E_{x,i-1/2}} = \frac{\rho_{i}}{\varepsilon_{0}}
$$

\n
$$
E_{x}(x) = \sum_{i=1}^{N_{x}} E_{x,i+1/2} \frac{W(x - X_{i+1/2})}{E_{x,i}} \text{ Self-force}
$$

\nRelocation
$$
E_{x,i} = \frac{E_{x,i-1/2} + E_{x,i+1/2}}{2}
$$

\n
$$
E_{x}(x) = \sum_{i=1}^{N_{x}} E_{x,i} \frac{W(x - X_{\overline{u}})}{E_{x,i}} \text{ No Self-force}
$$

Numerical procedures of PIC simulations

Time Step Chart

Effect of centered differentiation

$$
E(X_i, t) = E_o \exp(ikX_i - i\omega t)
$$

$$
\frac{\partial E(X_i, t)}{\partial x} = \frac{E(X_i + \Delta x/2, t) - E(X_i - \Delta x/2, t)}{\Delta x}
$$

$$
= \frac{1}{\Delta x} [\exp(ik\Delta x/2) - \exp(-ik\Delta x/2)] E(X_i, t)
$$

$$
= i \frac{\sin(k\Delta x/2)}{\Delta x/2} E(X_i, t) = iKE(X_i, t)
$$

Modified dispersion relation of light mode

Electromagnetic modes in vacuum

In centered difference scheme,

 $\Omega^2 = c^2 K^2$

Condition for numerical stability 1

Centered Difference Scheme in space and time

$$
\Omega^2 = c^2 K^2 \qquad \qquad \Omega = \frac{\sin(\omega \Delta t/2)}{\Delta t/2}, \qquad K = \frac{\sin(k \Delta x/2)}{\Delta x/2}
$$

$$
\text{For} \hspace{0.2cm} k = \frac{\pi}{\Delta x} \hspace{5mm} \text{we have} \hspace{5mm} \sin(\frac{\omega \Delta t}{2}) = \frac{\Delta t}{\Delta x}c < 1
$$

Courant Condition

$$
\boxed{c\Delta t < \Delta x}
$$

Condition for numerical stability 2

Shortest wavelength scale to solved in the explicit PIC is

$$
|k|\sim \frac{1}{\lambda_D}
$$

where λ_D is the Debye length.

Replacing *k* with *K*

$$
|\sin(k\Delta x/2))| \sim \frac{\Delta x}{2\lambda_D} < 1
$$

Explicit PIC should satisfy the following stability condition

$$
\Delta x < 2 \lambda_D
$$

Violation of the condition leads to numerical (unphysical) heating.

Numerical procedures of PIC simulations

Initial & boundary conditions

Initialization

- Particle loading
	- Positions:
	- Velocities: Maxwellian, shifted Maxwellian, loss-cone, ring, etc.
- Initial electrostatic field: Poisson's equation

Outer boundary condition

- Periodic boundaries
- Reflecting boundaries
- Open boundaries
	- Particle injection from outer edge
	- Non-reflective field boundary: masking method

Inner boundary condition

• for object-plasma interaction study

Numerical solutions of Poisson's equation

 $\nabla \cdot \boldsymbol{E} = \rho/\varepsilon_0$, $\boldsymbol{E} = -\nabla \phi$ reduce to $\nabla^2 \phi = -\rho/\varepsilon_0$ (Poisson's equation). In 1D,

$$
\frac{\partial^2 \phi}{\partial x^2} = -\frac{\rho}{\varepsilon_0}
$$

ourier space,

$$
k^2 \hat{\phi} = \frac{\hat{\rho}}{\varepsilon_0}
$$

In Fourier space, The Conterred difference scheme,

$$
K^2 \hat{\phi}_k = \frac{\hat{\rho}_k}{\varepsilon_0}
$$
, where $K = \frac{\sin(k \Delta x/2)}{\Delta x/2}$

FFT-based Poisson solver,

In periodic system,

$$
K^2 \hat{\phi}_0 = \frac{\hat{\rho}_0}{\varepsilon_0} = 0
$$
 for $k = 0$ \longrightarrow $\sum_i \frac{\rho_i}{N_x} = 0$ "Charge neutral"

Cancellation of uniform current

Consider periodic 1D system along x-axis:

$$
\frac{\partial \boldsymbol{J}_u}{\partial t} = \frac{n_e e^2}{m_e} \boldsymbol{E}_u \qquad \qquad \frac{\partial \boldsymbol{E}_u}{\partial t} = -\boldsymbol{J}_u
$$

…provide a solution in the following form:

$$
\boldsymbol{J}_u = \boldsymbol{J}_o \exp(i\omega_{pe}t) \qquad \boldsymbol{E}_u = \frac{i}{\omega_{pe}} \boldsymbol{J}_o \exp(i\omega_{pe}t)
$$

The uniform component must be subtracted. (Periodic system should also be "current neutral".)

$$
\boldsymbol{J}_u = \frac{1}{N_x} \sum_{i=1}^{N_x} \boldsymbol{J}_i \hspace{1cm} \boldsymbol{J}_{i,sub} = \boldsymbol{J}_i - \boldsymbol{J}
$$

 \boldsymbol{u}

Initial & boundary conditions

Initialization

- Particle loading
	- Positions:
	- Velocities: Maxwellian, shifted Maxwellian, loss-cone, ring, etc.
- Initial electrostatic field: Poisson's equation

Outer boundary condition

- Periodic boundaries
- Reflecting boundaries
- Open boundaries
	- Particle injection from outer edge
	- Non-reflective field boundary: masking method

Inner boundary condition

• for object-plasma interaction study

Inner boundary conditions for object-in-plasma

Solid objects in space

- Celestial bodies …(1)
- Dust grains …(2)
- •Spacecraft / instrument …(3) …and so on. Inner boundaries

Effects at **object surface**

- •Particle loss
- •Particle emission
- Charge deposition
- •Surface potential
- Conducting current
- •EM scattering

Under certain conditions, features called "electron" wings" can form around spacecraft, potentially introducing interference and artifacts into data collected by onboard instruments.

By @MarkZastrow @Fysikk UniOslo

"Electron Wings" Can Interfere with Spacecraft Measurements - Eos Spacecraft sometimes produce a form of electrical self-interference as they zip through plasmas in space—a previously unreported effect that may be lurking in... S eos.org

Capacitance matrix

Control of on-grid potential/charge

Some applications…

- 1. Known target potentials on all grids on object surface: Solve $Q = C\Phi$. Application: electrodes with applied potential
- Application: conducting objects with floating potential (e.g., spacecraft) 2. Equi-potential over object surface, but its potential value unknown: Solve $Q = C\Phi$ with $\sum_i \Delta q_i = 0$.

PIC simulations on Supercomputers

Fundamental strategies of parallelization

(static) Domain decomposition Particle decomposition

Load balancing consideration

Advanced strategies for parallelization

Dynamic domain decomposition

References from past ISSSs

Advanced Methods for Space Simulations (ISSS-7)

"One-dimensional Electromagnetic Particle Code: KEMPO1" Edited by H. Usui and Y. Omura (2007)

Computer Space Plasma Physics:

Simulation Technique and Software (ISSS-4)

"KEMPO1: Technical Guide to one-dimensional electromagnetic particle code" Edited by H. Matsumoto and Y. Omura (1993)

Computer Simulation of Space Plasmas (ISSS-1)

"Particle simulation of electromagnetic waves and its application to space plasmas" Edited by H. Matsumoto and T. Sato (1985)