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Collective effects in shortest spatio-temporal scales
»Debye shielding »Plasma oscillation
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Behavior as “plasma” manifests on spatio-temporal scales larger than

these characteristic quantities. 3



Criteria for plasmas

Criterion 1: System scales should be greater than A, in space and than wpe‘l in time.

Criterion 2: Debye sphere should contain large number of particles.
...coming from the condition that the potential energy by a nearest particle should be
much smaller than the particle’s kinetic energy (“weakly-coupled”).
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This also reads nip°® » 1, A
where n: number density.




Particle-in-Cell (

P|C) simulations

Large number of

discrete Lagrangian particles

— Newton’s equations of motion

|

EM-field (force)
on Eulerian mesh (grid)

— Maxwell’'s equations
s N




Design of “plasma behavior™ in PIC code

Plasma criterion 2: Debye sphere must contain large number of particles.
...request us to solve huge particles
— Computationally too expensive!

Solution 1: use of a computational particle
that combine many real-world particles into one.

Caveat: a small number of particles with larger charge causes o
too large electrostatic interactions between the particles. —2° 7 »

Solution 2:
use of a “thick” particle or a “charge-cloud” particle,

to reduce short-range inter-particle collisions. I_%g v »

This is often referred to as a “super-particle”.




Collisionless nature of super-particles

/ Two super-particles overlap

(partially or totally).

Electric forces between them
decrease or disappear.

(—): —l
Ax X
(x-coordinate of the center of thick particle)



Numerical procedures of PIC simulations

Initialization
 Variable definition

* Memory allocation
 Particle initialization
 Field initialization

»

Job completion
Diagnostics
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Maxwell's equations
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Centered difference scheme

Define u; = u(xi). Then, Taylor-expand u;,,,, and u;_,,, around x;
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Subtraction of each other gives where, Ax = x; = x;—1.
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-xample of grid assignment (1D along x-axis)
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Fxamples of grid assignment (2D & 3D)
> 2D > 3D
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Numerical procedures of PIC simulations

-

Initialization
 Variable definition

* Memory allocation

* Particle initialization
 Field initialization

»

Job completion
Diagnostics
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Charge density

Shape Function

Np: Number of Particles

“thick particle”

Territory of Grid i iTerritory of Grid i+1;
Az ' Az '
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Current density in 1D system along x-axis

* J,, ], components: area-weighting method (same as charge density)

* |, computed based on the area-weighting does NOT satisfy
6]x

charge continuity equation: % =V J=—== ...(1)

— cause an accumulative error in an electrostatlc (ES) field.

€ Solution 1: Correcting an ES field every time step
1. Define charge p. associated with errorin ES field : p, =p —V - E
2. Solve Poisson’s equation: V4¢, = —p, , for ¢,: electric potential
3. Compute ES field correction: E, = —V¢,
4. AddE.toE.

€ Solution 2: Using a “Charge Conservation Method (CCM)” to
compute current, which satisfies (1) in the machine accuracy.
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Charge conservation method in 1D (J, ): case 1

t+ At

.................................................................
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Charge conservation

method in 1D (J, ): case 2
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Charge conservation methods in higher dimensions

N
=

N

7

Rigorous decomposition
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Trajectory decomposition needed in case the particle
moves across cell edges; various approaches proposed.

Density decomposition

Zig-zag decomposition
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Numerical procedures of PIC simulations
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Update of velocity: Buneman-

Boris method
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Kinetic Energy Conservation
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Small Phase Delay
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Q. /we. = 0.9967 with w . At = 0.2
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Relativistic equation of motion
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Numerical procedures of PIC simulations

Initialization
 Variable definition

* Memory allocation
 Particle initialization
 Field initialization

\ 4

Job completion
Diagnostics
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Field interpolation to particle position
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- lectrostatic self-force cancellation

[]
N
E.(r) = ZEx,i—l—l/ZW(x — X 1/2)
= mmm) Sclf-force
Epi12+ By it1)0

Relocation E, ;=

2

Ny
E.(z) =) E.;W(z — Xj)

i=1 > No Self-force
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Magnetostatic self-force cancellation
Magnetostatic equatlon (Amperes Law) V X B = uoJ

Jyz,i—|—1/2 Ay qufvyz _ Xi—l—l/Q)
/Source Relocation J, &B. I
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Numerical procedures of PIC simulations

Initialization
 Variable definition

* Memory allocation
 Particle initialization
 Field initialization

»

Job completion
Diagnostics
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Leap-frog scheme

Time Step Chart
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Effect of centered differentiation

E(XZ, t) = Eoexp(ikXi — iwt)
OF(X;,t) E(X;+ Ax/2,t) — E(X; — Az/2,t)

ox Az

= Aim[exp(ikAa:/Q) —exp(—tkAx/2) E(X;,t)
_ .sin(kAz/2) o |

=i x5 B t) = IKB(X,, 1)
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Modified dispersion relation of light mode

Electromagnetic modes in vacuum

v = k2

¥

';.'L._.

In centered difference scheme,
."_} ."_} s
()2 = ~K?

sin(wAt/2) P sin(kAz/2)
Y —

() = ‘ ,.
At /2 Ax /2
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Condition for numerical stability 1

Centered Difference Scheme in space and time

.-7, 9 7.9 sin(wAt/2) . sin(kAx/2)
() = ¢~ ()= — ey K = !
- i At /2 ' Az /2
i WAL At
For k — A _ we have sIin(—— )= —c <1
Ax ( 2 ) Az

Courant Condition

cAt < Axr
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Condition for numerical stability 2

Shortest wavelength scale to solved in the explicit PIC is

1
k| ~ o where \p is the Debye length.

Replacing k with

Explicit PIC should satisfy the following stability condition

Axr < 2\p

Violation of the condition leads to numerical (unphysical) heating.
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Numerical procedures of PIC simulations

Initialization
 Variable definition

* Memory allocation
 Particle initialization
 Field initialization

)

Job completion
Diagnostics
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Initial & boundary conditions

Initialization

* Particle loading
* Positions:
* Velocities: Maxwellian, shifted Maxwellian, loss-cone, ring, etc.

* Initial electrostatic field: Poisson’s equation

Outer boundary condition
 Periodic boundaries
 Reflecting boundaries

* Open boundaries
 Particle injection from outer edge
* Non-reflective field boundary: masking method

Inner boundary condition
« for object-plasma interaction study

33



Numerical solutions of Poisson’s equation

V-E=p/ey, E=—-V¢p reduceto V?¢p =—p/gy, (Poisson’s equation).
In 1D,

2’ _ _»p
ax2 g
In Fourier space, In centered difference scheme,
2 [3) 2 Dk sin(kAx/2)
= = ==, where K =
k<o ” K?¢, oy ere ™

FFT-based Poisson solver,

FFT (DFT) FFT (DFT)
p; ) Dr —d)k‘qﬁl

In periodic system,

K2¢po = @ =0 for k=0 —— ENL =0 “Charge neutral”
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Cancellation of uniform current

Consider periodic 1D system along x-axis:

o, n.e’ OF .,
at - me Eu 6t — _Ju
...provide a solution in the following form:
(
Ju = Joexp(wpet), FE, = Joexp(wpet)

The uniform component must be subtracted.
(Periodic system should also be “current neutral”.)

Ji,sub:']i_']u
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Initial & boundary conditions

Initialization

* Particle loading
* Positions:
* Velocities: Maxwellian, shifted Maxwellian, loss-cone, ring, etc.

* Initial electrostatic field: Poisson’s equation

Outer boundary condition
 Periodic boundaries
 Reflecting boundaries

* Open boundaries
 Particle injection from outer edge
* Non-reflective field boundary: masking method

Inner boundary condition
* for object-plasma interaction study
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Inner boundary conditions for object-in-plasma
) (3)

A

Solid objects in space
* Celestial bodies ...(1)
* Dust grains ...(2)
» Spacecraft / instrument ...(3)
...and so on. _
[Innerboundanes]

Effects at object surface=—
* Particle loss
* Particle emission (2)
» Charge deposition
* Surface potential
» Conducting current
* EM scattering

37



Capacitance matrix

capacitance
Q =CD

charge potential

amatN
l\ 1

charges potentials /
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capacitance matrix
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Control of on-grid potential/charge

1. Solve Poisson’s eq. 2. Compute Ap; 3. Add charge correction 4. Solve Poisson’s eq.

po‘rig — d)orig A(PJ — (ptarget_j — ¢origj Ptotal < Porig + AQ/(Ax)Ndim Ptotal = ¢total

—Aq; = z CijAP;

J
Lj=1- Ngrid_for_object
¢;j: capacitance matrix element

Some applications...

1. Known target potentials on all grids on object surface: Solve Q = CP.
Application: electrodes with applied potential

2. Equi-potential over object surface, but its potential value unknown:
Solve Q = CP with );; Ag; = 0.
Application: conducting objects with floating potential (e.g., spacecraft)




PIC simulations

on Supercomputers



Fundamental strategies of parallelization

Subdomain-

boundary/%‘ B R R h
communications | =} Ll
for particles/fields

(not cell)

(static) Domain decomposition

Boundary of
— subdomain

Reduction
communications
for current J

Particle decomposition
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Particle —__ ‘

population
localized

Static domain decomposition

33

Processor
element (PE)

Load balancing consideration

Histogram of particles
for which PE is responsible

omnnOUE

n

P
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Advanced strategies for parallelization

Orthogonal recursive bisection OhHelp
[Thackera+, 2003] [Nakashlma+ 2009] —
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References from past [SSSs

Advanced Methods for Space Simulations (ISSS-7)
“One-dimensional Electromagnetic Particle Code: KEMPO1”
Edited by H. Usui and Y. Omura (2007)

Computer Space Plasma Physics:
Simulation Technique and Software (ISSS-4)
‘KEMPO1: Technical Guide to one-dimensional electromagnetic particle code”
Edited by H. Matsumoto and Y. Omura (1993)

Computer Simulation of Space Plasmas (1ISSS-1)
“Particle simulation of electromagnetic waves and its application to space plasmas”
Edited by H. Matsumoto and T. Sato (1985)

45



