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Space plasma

• 4th state of matter
• So hot: atoms split up into electrons & ions
• Quasi-neutral: same numbers of e & i
• Electrons & ions moving independently
• Dynamics influenced by electromagnetic forces
• Plasma current generates electromagnetic field
• Exhibiting “collective” behaviors



Collective effects in shortest spatio-temporal scales
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𝝀𝑫

➢Debye shielding ➢Plasma oscillation

Debye length:

𝜆𝐷 =
𝜀0𝑘B𝑇e
𝑛e𝑒

2

(electron) Plasma frequency:

𝜔𝑝𝑒 =
𝑛e𝑒2

𝑚e𝜀0

Behavior as “plasma” manifests on spatio-temporal scales larger than 
these characteristic quantities.



Criteria for plasmas
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Criterion 1: System scales should be greater than 𝜆𝐷 in space and than 𝜔𝑝𝑒
−1 in time.

Criterion 2: Debye sphere should contain large number of particles.
…coming from the condition that the potential energy by a nearest particle should be 
much smaller than the particle’s kinetic energy (“weakly-coupled”).

Potential energy: 𝜙~ 𝑒2

𝜀0𝑟
~

𝑒2

𝜀0
𝑛
1

3,   Kinetic energy: 𝐾 = 𝑘B𝑇e

Weakly-coupled condition: 𝑘B𝑇e ≫
𝑒2

𝜀0
𝑛
1

3 yields

𝑛
2
3

𝜀0𝑘B𝑇e
𝑛𝑒2

= 𝑛
2
3𝜆𝐷

2 ≫ 1

This also reads 𝑛𝜆𝐷3 ≫ 1,
where 𝑛: number density.

time

length𝜆𝐷

𝜔𝑝𝑒
−1

Kinetic
(incl. PIC)

Fluid

“Plasma”

𝜆D

many 
variations!



Particle-in-Cell (PIC) simulations
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EM-field (force)
on Eulerian mesh (grid)
→ Maxwell’s equations

Large number of
discrete Lagrangian particles
→ Newton’s equations of motion



Design of “plasma behavior” in PIC code
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Plasma criterion 2: Debye sphere must contain large number of particles.
…request us to solve huge particles
→ Computationally too expensive!

Solution 1: use of a computational particle
that combine many real-world particles into one.

Caveat: a small number of particles with larger charge causes
too large electrostatic interactions between the particles.

Solution 2:
use of a “thick” particle or a “charge-cloud” particle,
to reduce short-range inter-particle collisions.
This is often referred to as a “super-particle”.

𝒗

𝜆D

𝒗



Collisionless nature of super-particles
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𝒗

𝑞 = −1

𝐹 𝑥
=
𝑞
𝐸
𝑥

𝑥
(x-coordinate of the center of thick particle)

𝑞 = +1

∆𝑥

Two super-particles overlap 
(partially or totally).

Electric forces between them 
decrease or disappear.
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Numerical procedures of PIC simulations

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡

∇ × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+ 𝜇0𝑱

or
∇ ∙ 𝑬 =

𝜌

𝜀0
in ES approx.

J, 𝜌

Particle

J, 𝜌

J, 𝜌 J, 𝜌

J, 𝜌

E, BE, B

E, BE, B

Particle

E, B

Update of EM-field

Update of particle 
velocities/positions

d 𝑚𝑖𝐯𝑖
d𝑡

= 𝑞𝑖(𝑬 + 𝒗𝑖 × 𝑩)

d𝒙𝑖
d𝑡

= 𝒗𝑖

Main loop
Dt

Particle to Field

Field to Particle

Initialization
• Variable definition
• Memory allocation
• Particle initialization
• Field initialization

Job completion
Diagnostics



Maxwell’s equations
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where



Centered difference scheme
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Define 𝑢𝑖 = 𝑢(𝑥𝑖).  Then, Taylor-expand 𝑢𝑖+1/2 and 𝑢𝑖−1/2 around 𝑥𝑖.

𝑢((𝑖 + 1/2)Δ𝑥) = 𝑢𝑖+1/2 = 𝑢𝑖 +
Δ𝑥

2

𝜕𝑢

𝜕𝑥
𝑖

+
1

2!

Δ𝑥

2

2
𝜕2𝑢

𝜕𝑥2
𝑖

+
1

3!

Δ𝑥

2

3
𝜕3𝑢

𝜕𝑥3
𝑖

+⋅⋅⋅

𝑢((𝑖 − 1/2)Δ𝑥) = 𝑢𝑖−1/2 = 𝑢𝑖 −
Δ𝑥

2

𝜕𝑢

𝜕𝑥
𝑖

+
1

2!

Δ𝑥

2

2
𝜕2𝑢

𝜕𝑥2
𝑖

−
1

3!

Δ𝑥

2

3
𝜕3𝑢

𝜕𝑥3
𝑖

+⋅⋅⋅

𝑢𝑖+1/2 − 𝑢𝑖−1/2 = Δ𝑥
𝜕𝑢

𝜕𝑥
𝑖

+
2

3!

Δ𝑥

2

3
𝜕3𝑢

𝜕𝑥3
𝑖

+⋅⋅⋅

Subtraction of each other gives

𝜕𝑢

𝜕𝑥
𝑖

=
𝑢𝑖+1/2 − 𝑢𝑖−1/2

Δ𝑥
+ 𝑂 Δ𝑥2

𝜕𝑢

𝜕𝑥
𝑖

~
𝑢𝑖+1/2 − 𝑢𝑖−1/2

Δ𝑥

where, Δ𝑥 = 𝑥𝑖 − 𝑥𝑖−1.

Centered difference expression

𝑖𝑖 − 1/2 𝑖 + 1/2

𝜕𝑢

𝜕𝑥

𝑢𝑢 coupled

“Staggered” grid assignment



Example of grid assignment (1D along x-axis)
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𝑖 𝑖 + 1𝑖 − 1/2 𝑖 + 1/2



Examples of grid assignment (2D & 3D)
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x

z

y

Ex, Jx

Ey, Jy

Ey, Jy

Ey, Jy

Ey, Jy

Ez,Jz Ez, Jz

By

Bz

Bz

By

Bx Bx

r r

rr

r

r

r

r
Ex,Jx

Ex,Jx

Ex, Jx

Ez, JzEz, Jz

➢ 3D➢ 2D

Ez,Bz,Jz

Ex,Bx,Jx

Ex,Bx,Jx

Ey,By,Jy Ey,By,Jy

𝑖 𝑖 + 1𝑖 + 1/2

𝑗

𝑗 + 1/2

𝑗 + 1

x

y
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Numerical procedures of PIC simulations

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡

∇ × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+ 𝜇0𝑱

or
∇ ∙ 𝑬 =

𝜌

𝜀0
in ES approx.

J, 𝜌

Particle

J, 𝜌

J, 𝜌 J, 𝜌

J, 𝜌

E, BE, B

E, BE, B

Particle

E, B

Update of EM-field

Update of particle 
velocities/positions

d 𝑚𝑖𝐯𝑖
d𝑡

= 𝑞𝑖(𝑬 + 𝒗𝑖 × 𝑩)

d𝒙𝑖
d𝑡

= 𝒗𝑖

Main loop
Dt

Particle to Field

Field to Particle

Initialization
• Variable definition
• Memory allocation
• Particle initialization
• Field initialization

Job completion
Diagnostics



Charge density

14

Shape Function
Np: Number of Particles

“thick particle”

𝑎 + 𝑏

∆𝑥
= 1



Current density in 1D system along 𝑥-axis
• 𝐽𝑦, 𝐽𝑧 components: area-weighting method (same as charge density)

• 𝐽𝑥 computed based on the area-weighting does NOT satisfy
charge continuity equation: d𝜌

d𝑡
= −∇ ∙ 𝑱 = −

𝜕𝐽𝑥

𝜕𝑥
…(1)

→ cause an accumulative error in an electrostatic (ES) field.

◆Solution 1: Correcting an ES field every time step
1. Define charge 𝜌𝑐 associated with error in ES field : 𝜌𝑐 = 𝜌 − ∇ ∙ 𝑬

2. Solve Poisson’s equation: ∇2𝜙𝑐 = −𝜌𝑐 , for 𝜙𝑐: electric potential
3. Compute ES field correction: 𝑬𝑐 = −∇𝜙𝑐
4. Add 𝑬𝑐 to 𝑬.

◆Solution 2: Using a “Charge Conservation Method (CCM)” to 
compute current, which satisfies (1) in the machine accuracy.
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Charge conservation method in 1D ( 𝐽𝑥 ): case 1
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Charge conservation method in 1D ( 𝐽𝑥 ): case 2

17



Charge conservation methods in higher dimensions

18[Villasenor & Buneman, 1992] [Esirkepov, 2001] [Umeda+, 2003]

Rigorous decomposition Density decomposition Zig-zag decomposition

Trajectory decomposition needed in case the particle 
moves across cell edges; various approaches proposed.
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Numerical procedures of PIC simulations

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡

∇ × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+ 𝜇0𝑱

or
∇ ∙ 𝑬 =

𝜌

𝜀0
in ES approx.

J, 𝜌

Particle

J, 𝜌

J, 𝜌 J, 𝜌

J, 𝜌

E, BE, B

E, BE, B

Particle

E, B

Update of EM-field

Update of particle 
velocities/positions

d 𝑚𝑖𝐯𝑖
d𝑡

= 𝑞𝑖(𝑬 + 𝒗𝑖 × 𝑩)

d𝒙𝑖
d𝑡

= 𝒗𝑖

Main loop
Dt

Particle to Field

Field to Particle

Initialization
• Variable definition
• Memory allocation
• Particle initialization
• Field initialization

Job completion
Diagnostics



Update of velocity: Buneman-Boris method
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Kinetic Energy Conservation

Small Phase Delay



Relativistic equation of motion

21
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Numerical procedures of PIC simulations

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡

∇ × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+ 𝜇0𝑱

or
∇ ∙ 𝑬 =

𝜌

𝜀0
in ES approx.

J, 𝜌

Particle

J, 𝜌

J, 𝜌 J, 𝜌

J, 𝜌

E, BE, B

E, BE, B

Particle

E, B

Update of EM-field

Update of particle 
velocities/positions

d 𝑚𝑖𝐯𝑖
d𝑡

= 𝑞𝑖(𝑬 + 𝒗𝑖 × 𝑩)

d𝒙𝑖
d𝑡

= 𝒗𝑖

Main loop
Dt

Particle to Field

Field to Particle

Initialization
• Variable definition
• Memory allocation
• Particle initialization
• Field initialization

Job completion
Diagnostics



Field interpolation to particle position
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i i+1i-1/2 i+1/2

F(x)

H(x)Linear Interpolation



Electrostatic self-force cancellation
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Self-force 

Relocation

No Self-force



Magnetostatic self-force cancellation

25

Magnetostatic equation (Ampere’s Law)

Field Relocation

Source Relocation Jy & Bz

Jz & By

𝑩𝑦𝑧 𝑥

=

𝑖=1

𝑁𝑥

𝑩𝑦𝑧,𝑖+ Τ1 2𝑊 𝑥 − 𝑋𝑖+ Τ1 2

No Self-force
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Numerical procedures of PIC simulations

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡

∇ × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+ 𝜇0𝑱

or
∇ ∙ 𝑬 =

𝜌

𝜀0
in ES approx.

J, 𝜌

Particle

J, 𝜌

J, 𝜌 J, 𝜌

J, 𝜌

E, BE, B

E, BE, B

Particle

E, B

Update of EM-field

Update of particle 
velocities/positions

d 𝑚𝑖𝐯𝑖
d𝑡

= 𝑞𝑖(𝑬 + 𝒗𝑖 × 𝑩)

d𝒙𝑖
d𝑡

= 𝒗𝑖

Main loop
Dt

Particle to Field

Field to Particle

Initialization
• Variable definition
• Memory allocation
• Particle initialization
• Field initialization

Job completion
Diagnostics

Dx

Dx



Time Step Chart
Leap-frog scheme

27∆𝑡
𝑡



Effect of centered differentiation
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Modified dispersion relation of light mode

29

Electromagnetic modes in vacuum

In centered difference scheme,



Condition for numerical stability 1
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Centered Difference Scheme in space and time

Courant Condition

For we have



Condition for numerical stability 2
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Shortest wavelength scale to solved in the explicit PIC is

Replacing k with K

Explicit PIC should satisfy the following stability condition

Violation of the condition leads to numerical (unphysical) heating.

where         is the Debye length.
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Numerical procedures of PIC simulations

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡

∇ × 𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+ 𝜇0𝑱

or
∇ ∙ 𝑬 =

𝜌

𝜀0
in ES approx.

J, 𝜌

Particle

J, 𝜌

J, 𝜌 J, 𝜌

J, 𝜌

E, BE, B

E, BE, B

Particle

E, B

Update of EM-field

Update of particle 
velocities/positions

d 𝑚𝑖𝐯𝑖
d𝑡

= 𝑞𝑖(𝑬 + 𝒗𝑖 × 𝑩)

d𝒙𝑖
d𝑡

= 𝒗𝑖

Main loop
Dt

Particle to Field

Field to Particle

Initialization
• Variable definition
• Memory allocation
• Particle initialization
• Field initialization

Job completion
Diagnostics

Dx

Dx



Initial & boundary conditions

Initialization
• Particle loading

• Positions:
• Velocities: Maxwellian, shifted Maxwellian, loss-cone, ring, etc.

• Initial electrostatic field: Poisson’s equation

Outer boundary condition
• Periodic boundaries
• Reflecting boundaries
• Open boundaries

• Particle injection from outer edge
• Non-reflective field boundary: masking method

Inner boundary condition
• for object-plasma interaction study

33



Numerical solutions of Poisson’s equation
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∇ ∙ 𝑬 = Τ𝜌 𝜀0,  𝑬 = −∇𝜙 reduce to    ∇2𝜙 = − Τ𝜌 𝜀0 (Poisson’s equation).
In 1D,

𝜕2𝜙

𝜕𝑥2
= −

𝜌

𝜀0

In Fourier space, In centered difference scheme,
𝑘2 𝜙 =

ෝ𝜌

𝜀0
𝐾2 𝜙𝑘 =

ෝ𝜌𝑘

𝜀0
,  where  𝐾 =

sin 𝑘∆𝑥/2

∆𝑥/2

𝜌𝑖 ො𝜌𝑘 𝜙𝑘 𝜙𝑖

FFT (DFT) FFT (DFT)𝐾2 𝜙𝑘 =
ො𝜌𝑘
𝜀0

FFT-based Poisson solver,

In periodic system,

𝐾2 𝜙0 =
ෝ𝜌0

𝜀0
= 0 for  𝑘 = 0 

𝑖

𝜌𝑖
𝑁𝑥

= 0 “Charge neutral”



Cancellation of uniform current
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The uniform component must be subtracted.
(Periodic system should also be “current neutral”.)

…provide a solution in the following form:

Consider periodic 1D system along x-axis:



Initial & boundary conditions

Initialization
• Particle loading

• Positions:
• Velocities: Maxwellian, shifted Maxwellian, loss-cone, ring, etc.

• Initial electrostatic field: Poisson’s equation

Outer boundary condition
• Periodic boundaries
• Reflecting boundaries
• Open boundaries

• Particle injection from outer edge
• Non-reflective field boundary: masking method

Inner boundary condition
• for object-plasma interaction study

36



Inner boundary conditions for object-in-plasma
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Solid objects in space
• Celestial bodies …(1)
• Dust grains …(2)
• Spacecraft / instrument …(3)
…and so on.

Effects at object surface
• Particle loss
• Particle emission
• Charge deposition
• Surface potential
• Conducting current
• EM scattering

(1)

(2)

(3)

[Miyake+, 2020]

Inner boundaries



Capacitance matrix
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𝑞1
𝑞2
𝑞3
⋮
𝑞𝑛

=

𝑐11 ⋯ 𝑐𝑛1
𝑐12 𝑐𝑛2
𝑐13 𝑐𝑛3
⋮ ⋱ ⋮
𝑐1𝑛 ⋯ 𝑐𝑛𝑛

𝜙1
𝜙2

𝜙3

⋮
𝜙𝑛

charges potentials

capacitance matrix

𝑄 = 𝐶Φ
charge potential

capacitance

𝑞𝑖 , 𝜙𝑖

𝑞𝑖+1, 𝜙𝑖+1

𝑞𝑖+2, 𝜙𝑖+2



Control of on-grid potential/charge
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Some applications…
1. Known target potentials on all grids on object surface: Solve 𝑄 = 𝐶Φ.  

Application: electrodes with applied potential
2. Equi-potential over object surface, but its potential value unknown:

Solve 𝑄 = 𝐶Φ with σ𝑖 Δ𝑞𝑖 = 0.
Application: conducting objects with floating potential (e.g., spacecraft)

1. Solve Poisson’s eq.
𝜌orig ⟹ 𝜙orig

2. Compute Δ𝜌𝑖
Δ𝜙𝑗 = 𝜙target_𝑗 − 𝜙orig𝑗

Δ𝑞𝑖 =

𝑗

𝑐𝑖𝑗Δ𝜙𝑗

𝑖, 𝑗 = 1⋯𝑁grid_for_object
𝑐𝑖𝑗: capacitance matrix element

3. Add charge correction
𝜌total ← 𝜌orig + ΤΔ𝑞 ∆𝑥 𝑁dim

4. Solve Poisson’s eq.
𝜌total ⟹𝜙total



PIC simulations
on Supercomputers
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Fundamental strategies of parallelization
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Particle decomposition(static) Domain decomposition

Boundary of 
subdomain 
(not cell)

Subdomain-
boundary 
communications
for particles/fields Reduction 

communications
for current 𝑱

+



Load balancing consideration
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Particle 
population 
localized

33

12

03 13 23

01

32

3010

02 22

11 21

00 20

31

Processor 
element (PE)

33

Histogram of particles 
for which PE is responsible

Static domain decomposition

np



Advanced strategies for parallelization
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One-handed help
(OhHelp)
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av.# of particles
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av.# of particles

load
unbalanced

load
balanced

Dynamic domain decomposition
Static domain decomposition

+
Dynamic PE assignment

OhHelp
[Nakashima+, 2009]

Orthogonal recursive bisection 
[Thackera+, 2003]
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