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Definitions

Phase space: Multi-dimensional space consisting of all particle
trajectories and momenta (velocities):
x⃗1, p⃗1, x⃗2, p⃗2, · · · , x⃗N , p⃗N

Ensemble: Set of all microscopic state of a system consistent
with given macroscopic parameters (n, V⃗ , P)
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Distribution function and phase space

f : Probability density for finding any particle in the phase
space volume element [x , x + dx ], [y , y + dy ], [z , z + dz ] and
with velocities [vx , vx + dvx ], [vy , vy + dvy ], [vz , vz + dvz ] such
that:

d6N = f (x⃗ , v⃗ , t) × d3x⃗ × d3v⃗

Figure 1: Trajectories in phase space

Figure 2: Volume element in phase space
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Maxwell-Boltzmann distribution function

The Maxwell-Boltzmann distribution represent the thermal equilibrium. It
is a stationary and homogeneous solution of the kinetic equations.

fα = n0α

( mα

2πkBTα

)3/2
exp

(
− mαv⃗ 2

2kBTα

)

Figure 3: 1D Maxwellian

Figure 4: 2D anisotropic Maxwellian
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Full equations of motion

Full equations of motion

∇ · E⃗(x⃗ , t) = ρ(x⃗ , t)
ϵ0

(1)

∇ · B⃗(x⃗ , t) = 0 (2)

∇ × E⃗(x⃗ , t) = −∂B⃗(x⃗ , t)
∂t (3)

∇ × B⃗(x⃗ , t) = µ0J⃗(x⃗ , t) + µ0ϵ0
∂E⃗(x⃗ , t)
∂t (4)

dvi

dt = q
m

[
E⃗(x⃗i , t) + v⃗ × B⃗(x⃗i , t)

]
(5)

ρ(x⃗ , t) =
∑

α

qα

∫
dv 3

∑
i

δ(x⃗ − x⃗i )δ(v⃗ − v⃗i ) (6)

J⃗(x⃗ , t) =
∑

α

qα

∫
dv 3 v⃗

∑
i

δ(x⃗ − x⃗i )δ(v⃗ − v⃗i ) (7)

But this approach is unpractical...
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Vlasov equation 1

Liouville’s theorem: in absence of collisions, f is invariant following the
motion in the 6D phase space.
→ Conservation of f (x⃗ , v⃗ , t) in phase space: df /dt = 0
Convective derivative: d/dt = ∂/∂t + v⃗ · ∂/∂x⃗ + a⃗ · ∂/∂v⃗

Lorentz force: a⃗ = (q/m)
(
E⃗ + v⃗ × B⃗

)

Figure 5: Collisions and conservation of phase space [Bittencourt, 2004]
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Vlasov equation 2

Note that here E⃗ and B⃗ are long-range averaged (in space and time)
macroscopic fields from all the plasma particles and external sources (but
no microscopic fields due to binary collisions).

Vlasov equation

dfα(x⃗ , v⃗ , t)
dt =

[
∂

∂t + v⃗ · ∂

∂x⃗ + qα

mα

(
E⃗(x⃗ , t) + v⃗ × B⃗(x⃗ , t)

)
· ∂

∂v⃗

]
fα(x⃗ , v⃗ , t) = 0
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Fully-kinetic/Vlasov description

Fully-kinetic equations

∇ · E⃗ = ρ

ϵ0
(8)

∇ · B⃗ = 0 (9)

∇ × E⃗ = −∂B⃗
∂t (10)

∇ × B⃗ = µ0J⃗ + µ0ϵ0
∂E⃗
∂t (11)[

∂

∂t + v⃗ · ∂

∂x⃗ + qα

mα

(
E⃗ + v⃗ × B⃗

)
· ∂

∂v⃗

]
fα = 0 (12)

ρ =
∑

α

qα

∫
dv 3 fα (13)

J⃗ =
∑

α

qα

∫
dv 3 v⃗ fα (14)
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How to solve the Vlasov/plasma equation

Fluid/MHD: Solve for moments of fα (
∫

vnd3v⃗ (Vlasov eq.). n = 0:
density, n = 1: momentum, n = 2: energy/pressure/temperature)
Vlasov: Solve for fα directly

Simulate particles sampling fα:

Particle-particle methods (N-body): scaling as N2

PIC scales as ∼ N
Hybrid models: part kinetic/Vlasov, part fluid.
Test particle methods: another way to bridge the gap between fluids and
kinetic models, providing first-order estimates of kinetic effects in
problems for which a fully-kinetic solution is not practical.
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Hierarchy of plasma physics models

Kinetic description: microscopic properties, it uses the velocity
distribution function f .
Fluid description: it uses a few macroscopic quantities, averages of the
distribution function (mean velocity, pressure/temperature). Valid for or
near thermodynamic equilibrium.

Figure 6: Hierarchy of plasma physics models
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The test particle method

1 Obtain electromagnetic fields E⃗ , B⃗ from another methods or observations
(decoupling Maxwell equations).

2 Integrate particle trajectories using those electromagnetic fields via, e.g.,
1 Full Lorentz force:

dvi

dt = q
m

[
E⃗(x⃗i , t) + v⃗ × B⃗(x⃗i , t)

]
(15)

2 Guiding center approximation.
3 Use the trajectories to infer approximate kinetic properties of the system.

Note that this approach is not self-consistent, the particles do not have any
effect on the fields (no feedback or corrections).
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Particle motion in background magnetic fields
The basic motion of a particle under the influence of a static and uniform
magnetic field is the gyromotion.
Taking the dot product of Eq. (15) with v⃗ , we get

d
dt

(
mv 2

2

)
= 0

i.e., a static magnetic field cannot change the kinetic energy of a particle.
Assuming a magnetic field B⃗ = Bẑ, Eq. (15) becomes:

m dvx

dt = qBvy (16)

m dvy

dt = −qBvx (17)

m dvz

dt = 0 (18)

and thus,
d2vx

dt2 + Ω2
cvx = 0 (19)

d2vy

dt2 + Ω2
cvy = 0 (20)
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Particle motion in background magnetic fields

Where the gyrofrequency (or Larmor/cyclotron) is:

Ωc = qB
m (21)

Solution

vx = v⊥ cos (Ωct + ψ) (22)
vy = v⊥ sin (Ωct + ψ) (23)
vz = v∥ (24)

where ψ is an arbitrary phase angle.
By integrating we get,

x = ρc sin (Ωct + ψ) + (x0 − rc sinψ) (25)
y = −ρc cos (Ωct + ψ) + (y0 + rc cosψ) (26)
z = z0 + v∥t (27)
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Particle motion in background magnetic fields

Where the gyroradius (or Larmor radius or cyclotron radius) is:

ρc = |v⊥|
Ωc

= m|v⊥|
|q|B (28)

Note that this can be understood from force balancing the "centrifugal"
force:

mv 2
⊥

r = qv⊥B (29)

Particles move in circular/helical orbits with frequency Ωc and radius ρc
about the guiding center Rg = x̂x0 + ŷ y0 + ẑ(z0 + v∥t)
Note that particles with higher velocities orbit in circles with larger radii,
but same frequency.
Particles with larger masses orbit in circles with larger radii, but with
lower frequencies (longer periods).
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Particle motion in magnetic fields

Patricio Muñoz (pmunoz@astro.physik.tu-berlin.de) ZAA@TUB 14/59



Introduction Particle motion description Integration of particle trajectories Test particle methods Exercises

Particle motion in background magnetic fields

Pitch angle:

α = tan−1
(

v⊥

v∥

)
(30)

Magnetic moment

µ = qΩc

2π︸︷︷︸
current

πρ2
c︸︷︷︸

area

= mv 2
⊥

2B (31)

The direction of the magnetic field generated by the gyration is opposite
to that of the external field: a plasma is a diamagnetic medium.
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E⃗ × B⃗ drift

Let us consider, in addition to B⃗ = ẑB, an electric field: E⃗ = x̂E⊥ + ẑE∥.
The equations of motions are:

m dv⃗⊥

dt = q(x̂E⊥ + v⃗⊥ × ẑB) (32)

m
dv∥

dt = qE∥ (33)

Let us decompose v⃗⊥ = v⃗E + v⃗ac . By choosing:

v⃗E = E⃗ × B⃗
B2 (34)

Eq. (32) becomes the eq. for gyration with frequency Ωc .

m dv⃗ac

dt = qv⃗ac × ẑB (35)

The solution is then:

v⃗(t) = ẑv∥(t) + v⃗E + v⃗ac(t) (36)
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E⃗ × B⃗ drift
The average of v⃗ over one gyroperiod is:

⟨v⃗⟩ = ẑv∥ + v⃗E (37)
so v⃗E is the average perpendicular velocity.
This drift arises from the difference in the local gyroradius between
top/bottom.
The E⃗ × B⃗ drift is independent on q, m and v⊥.
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Gradient B drift

Let us assume a magnetic field with intensity varying in the perpendicular
direction to the B-vector B⃗(y) = ẑBz(y).
This drift also arises from a force perpendicular to the magnetic field.
Generalizing the expression for the E⃗ × B⃗ force:

v⃗F = (F⃗⊥/q) × B⃗
B2 (38)

Patricio Muñoz (pmunoz@astro.physik.tu-berlin.de) ZAA@TUB 18/59
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Gradient B drift

In this geometry, the perpendicular force is

F⃗ = qv⃗ × B⃗ = x̂qvy Bz − ŷqvx Bz (39)

∼ x̂qvy

(
B0 + y ∂Bz

∂y

)
− ŷqvx

(
B0 + y ∂Bz

∂y

)
(40)

By assuming that particles follow approximately orbits in an uniform field
(Eqs. (25)-(26)), we can determine the gyroaverage force F⃗ :

⟨Fy ⟩ = qv⊥rc

2
∂Bz

∂y = mv 2
⊥

2B
∂Bz

∂y or more generally = W⊥

B ∇B
(41)

This way, the grad-B (∇B⃗) drift velocity is:

v⃗∇ = (F⃗⊥/q) × B⃗
B2 = ⟨F⃗y ⟩ŷ × ẑBz

qB2
z

(42)

= mv 2
⊥

2qBz

∂Bz

∂y x̂ or more generally = mv 2
⊥

2q
B⃗ × ∇B

B3 (43)
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Curvature B drift
In a curved magnetic field line, particles experience a centrifugal force
perpendicular to the B-field

F⃗cf = mv 2
∥

R⃗c

R2
c

(44)

which causes a drift perpendicular to both vectors.
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Curvature B drift

Curvature drift:

v⃗R = (F⃗cf /q) × B⃗
B2 = (45)

=
mv 2

∥

q
R⃗c × B⃗
R2

c B2 (46)

In vacuo this drift cannot be the only one because ∇ × B⃗ = 0. A more
general expression due to both gradient and curvature drifts is:

v⃗total = v⃗R + v⃗∇ =
(
v 2

∥ + v 2
⊥/2

) B⃗ × ∇B
ΩcB2 (47)
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Curvature B drift

Longitudinal drift of radiation belt electrons (and associated ring current
because of opposite ion/electron drift)
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Introduction Particle motion description Integration of particle trajectories Test particle methods Exercises

Adiabatic invariance of the magnetic moment

Magnetic moment µ = mv2
⊥

2B tends to be conserved as long as (spatial or
temporal) changes in B are small over a gyroradius or gyroperiod.
The particle’s perpendicular energy increases while its parallel energy
decreases as it moves toward regions of stronger B, until it eventually
reaches v∥ = 0 and it bounces back (magnetic mirror/bottle).
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Polarization drift

In a slowly varying electric field the so-called polarization drift appears:

v⃗p = m
qB2

dE⃗
dt (48)

This drift depends on the particles’ mass and charge, and it can change
the particle’s energy.
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Guiding center approximation
Valid when the gyroradius (ρ = mv/qB) and gyroperiod
(∝ 1/Ω = m/qB) are much smaller than the length scale of transverse
gradients and characteristic oscillation periods of the background EM
fields
The motion of a charged particle is described in terms of variables
representing the gyration around B-field lines and the motion of its
guiding center.
For the solar corona, typical gyroradii are 10−3m for electrons and 10−2m
for protons, much smaller than typical characteristic lengths scales.
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Guiding center approximation

Non-relativistic version [Northrop, 1963]:

dR⃗
dt = v∥b̂ + b̂

B ×
(

−E⃗ + m
q

(
v∥

db̂
dt + dv⃗E

dt

)
+ µ

q ∇B
)

(49)

d(mv∥)
dt = mu⃗E · db̂

dt + qE∥ − µb̂ · ∇B (50)

with: R⃗: guiding center position, b̂ unit vector along the B-field,
v⃗E = E⃗ × b̂/B is the E⃗ × B⃗ drift velocity and µ = mv 2

⊥/2B is the
magnetic moment.
In Eq. (49). 1st term: parallel motion, 2nd term: E⃗ × B⃗ drift, 3rd term:
curvature drift, 4st term: polarization drift, 5th is the gradient-B drift.
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2nd-order Runge-Kutta

It is based on the exact integration of
dy/dt = f (t, y)

yi+1 = yi +

ti+1∫
ti

f (t, y)dt (51)

The basis for RK2 is to approximate f (t, y) by
a Taylor expansion w/r to the middle point:

f (t, y) ≈ f (ti+1/2, yi+1/2)+(t−ti+1/2)df
dt

∣∣∣∣∣
ti+1/2

Since the integral of the 2nd term vanishes,

yi+1 = yi + hf (ti+1/2, yi+1/2) + O(h3)

Finally, the value of yi+1/2
is obtained by the Euler’s
method:
yi+1/2 ≈ yi + h

2 f (ti , yi ).

2nd-order Runge-Kutta (RK2)

yi+1 = yi + k2

k1 = hf (ti , yi )

k2 = hf (ti + h
2 , yi + k1

2 )

The local/global error is
O(h3)/O(h2).
Here h = ∆t
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Runge-Kutta methods: General derivation

The family of Runge-Kutta methods are derived from the following Taylor
expansion, without explicit calculation of the derivatives:

y(ti+1) = y(ti + h) = y(ti ) + hy ′(ti ) + h2

2 y ′′(ti ) + · · ·

In particular, RK2 is obtained by finding the constants a1, a2, p1, q11 such
as the following formula coincides with the Taylor expansion to 2nd order:

yi+1 = yi + a1k1 + a2k2, con
k1 = hf (ti , yi )
k2 = hf (ti + p1h, yi + q11k1h)

The solution is:

a1 + a2 = 1, a2p1 = 1
2 , a2q11 = 1

2

Since there are 3 eqs but 4 unknowns, there is some freedom of choice-
By choosing a2 = 1/2, we get the (improved) Euler’s method. Choosing
a2 = 1, we get RK2 with a1 = 0, p1 = 1/2, q1 = 1/2.
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4th-order Runge Kutta

By considering more terms in the Taylor expansion, it is possible to
improve the precision of RK2. The most popular algorithm (since the XIX
century) is:

4th-order Runge Kutta (classic RK, RK4)

yi+1 = yi + 1
6(k1 + 2k2 + 2k3 + k4)

k1 = hf (ti , yi )

k2 = hf (ti + h
2 , yi + k1

2 )

k3 = hf (ti + h
2 , yi + k2

2 )

k4 = hf (ti + h, yi + k3)

Global/local error O(h5)/O(h4)
RK4 estimates the value of yi+1 by averaging 4 slopes
It provides a good balance between accuracy and computational cost
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4th-order Runge Kutta

Figure 7: Slopes used for the Runge-Kutta method

Patricio Muñoz (pmunoz@astro.physik.tu-berlin.de) ZAA@TUB 30/59



Introduction Particle motion description Integration of particle trajectories Test particle methods Exercises

4th-order Runge Kutta

Figure 8: Comparison of Runge-Kutta with other methods for the solution of the ODE: y′ = sin2(t) ∗ y
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Symplectic methods
When we apply conventional methods like Euler’s or RK to a Hamiltonian
system, it causes an artificial excitation or damping.
For autonomous Hamiltonian systems:

dq
dt = ∂H

∂p ,
dp
dt = −∂H

∂q
H is conserved and the two-form dp ∧ dq = constant (Jacobian)
A numerical integration scheme satisfying those two properties is
symplectic, they preserve the phase space density. They conserve the
energy (time-reversible).
Assuming known the Hamiltonian (∼ energy) of the system, symplectic
methods can be written by an n-iteration of:

xi = xi−1 + ci ∆t xi−1 (52)
vi = vi−1 + di ∆t a(xi ) (53)

where a = F/m and ci , di are constants.
There are explicit symplectic algorithms for separable Hamiltonians:
H = T (p) + V (q) (conservative systems). Note that unfortunately the
Hamiltonian of charged particles in EM fields is not separable:
H(p⃗, x⃗) = (1/2)(p⃗ − A⃗)2 + ϕ. More info: [Yoshida, 1993]
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Verlet’s algorithm

Example for the 2nd Newton’s law: using a finite central difference of 2nd
order for d2x/dt2 = F/m = a, and central difference for the first
derivative dx/dt = v
Thus, we get an algorithm very useful for N-body problems, which is also
symplectic: c1 = c2 = 1/2, d1 = 1, d2 = 0.

Verlet’s (Störmer) algorithm

x⃗i+1 = 2x⃗i − x⃗i−1 + (∆t)2a⃗i + O(∆t)4

v⃗i = 1
2∆t (x⃗i+1 − x⃗i−1) + O(∆t)2

The local/global error is O(h4)/O(h2).
Initialization: multistep method: 2 initial positions are required: x⃗0 y x⃗1,
but we have only the initial conditions x⃗0 y x⃗0. We can assume
F⃗ = constant in the first interval [0,∆t], so that we can use
x⃗1 ≈ x⃗0 + ∆tv⃗0 + a⃗0∆t2/2
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Velocity Verlet

2nd-order method, where v⃗ and x⃗ are simultaneously calculated. Similar
standard Verlet. Algorithm:

1 v⃗n+1/2 = v⃗n + a⃗n∆t/2 (constant coordinates)
2 x⃗n+1 = x⃗n + v⃗n+1/2∆t = x⃗n + v⃗n∆t + a⃗n∆t2/2 (constant velocities)
3 a⃗n+1 = a⃗(x⃗n+1, tn+1)
4 v⃗n+1 = v⃗n+1/2 + a⃗n+1∆t/2 = v⃗n + (∆t/2)(⃗an + a⃗n+1) (constant

coordinates)
Advantage over classical Verlet: only one initial value for x⃗ and v⃗ are
needed, less round-off errors
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Leapfrog method

2nd-order symplectic method where x⃗ and v⃗ are calculated alternatively
(x⃗ in multiples of ∆t and velocities in half-integer multiples of ∆t).
Otherwise is similar to velocity Verlet. It is equivalent to use different
grids for x⃗ and v⃗ , shifted in ∆t/2.

1 v⃗n+1/2 = v⃗n−1/2 + a⃗n∆t (constant x⃗)
2 x⃗n+1 = x⃗n + v⃗n+1/2∆t (constant v⃗)
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Boris algorithm

Specifically used to advance particles in plasma simulations (it is the de
facto algorithm).
It has very good conservation properties: it conserves phase space
volume, even though it is not symplectic [Qin et al., 2013]
Discretized Lorentz force:

x⃗ i+1/2 − x⃗ i−1/2

∆t = v⃗ i+1 (54)

u⃗i+1 − u⃗i

∆t = q
m

(
E⃗ i + (v⃗ i+1 + v⃗ i )

2 × B⃗ i
)

(55)

with u⃗ = γv⃗ . Note in the RHS of the acceleration eq. the average
velocity (v⃗ i+1 + v⃗ i )/2 = v⃗ i+1/2

The idea of the Boris algorithm is to separate the electric and magnetic
force in 3 parts: first half of the electric force is determined, then the full
magnetic force (rotation) and finally the second half of the electric force.
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Boris push
1

u⃗− = u⃗i + q∆t
2m E⃗ i+1/2

2
u⃗+ − u⃗−

∆t = q
m

(
v⃗ i+1/2 × B⃗ i+1/2)

3

u⃗i+1 = u⃗+ + q∆t
2m E⃗ i+1/2

Figure 9: Boris push
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Boris push

The phase angle of the rotation (2nd part):

θ = q∆t
mγ− B i+1/2 (56)

The rotation is solved in this way:

u⃗′ = u⃗− + u⃗− × t⃗ (57)

u⃗+ = u⃗− + 2
1 + t2 (u⃗

′
× t⃗) (58)

with
t⃗ = tan(θ/2)b⃗i+1/2 (59)

Sometimes the previous equation is approximated as t⃗ = (θ/2)b⃗ (see a
comparison in [Ripperda et al., 2018, Zenitani and Umeda, 2018])
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Boris algorithm

Figure 10: Comparison of trajectories in a given B-field between RK4 and Boris algorithms [Qin et al., 2013]
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Boris algorithm

Figure 11: Comparison of energies of a charged particle moving in a given B-field, with its trajectory calculated
using the RK4 and Boris algorithms [Qin et al., 2013]
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Vay pusher

Another particle pusher specifically developed for relativistic particles
[Vay, 2008].
It is based on a modification of the Boris algorithm that is designed to
avoid spurious perpendicular electric fields due to the relativistic Lorentz
transformation of the EM-fields.
It preserves the E⃗ × B⃗ velocity (regardless the value of ∆t), also in the
relativistic case, so it has attracted attention for applications to
laser-plasma interactions and relativistic astrophysics.
It does not conserve the phase space volume.
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Vay pusher

In the part 2 (rotation) of the Boris algorithm, the average velocity is
calculated as:

v⃗ i+1/2 = γ i v⃗ i + γ i+1v⃗ i+1

2γ i+1/2 (60)

with

γ i+1/2 =
√

1 +
(
γ i v⃗ i + q∆t

2m E⃗ i+1/2
)

(61)

In the Vay’s algorithm, this average is instead calculated as:

v⃗ i+1/2 = v⃗ i + v⃗ i+1

2 (62)

which comes from considering the special case E⃗ + v⃗ × B⃗ = 0 in the
original Boris algorithm, and leads to the rotation step:

γ i+1v⃗ i+1 − γ i v⃗ i

∆t = q
m

(
E⃗ i+1/2 + v⃗ i+1/2 × B⃗ i+1/2) (63)

whose solution leads to a two-step procedure for u⃗i+1/2 and then u⃗i (with
u⃗i = γ i v⃗ i [Vay, 2008]
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Vay vs Boris pushers

Figure 12: [Vay, 2008]
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Vay vs Boris pushers

Figure 13: [Belyaev, 2015]
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The test particle method

1 Obtain electromagnetic fields E⃗ , B⃗ from another methods or observations
(decoupling Maxwell equations).

2 Integrate particle trajectories using those electromagnetic fields via, e.g.,
1 Full Lorentz force:

dvi
dt = q

m

[
E⃗ (x⃗i , t) + v⃗ × B⃗(x⃗i , t)

]
(64)

2 Guiding center approximation.
3 Use the trajectories to infer approximate kinetic properties of the system.

Note that this approach is not self-consistent, the particles do not have any
effect on the fields (no feedback or corrections).

There are 4 formulations of the test particle method
[Marchand, 2010, Voitcu et al., 2012]
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Method 1: trajectory sampling

It solves individual representative trajectories (the choice is not trivial)
Useful to visualize aspects such as particle transport or energetics
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Method 1: trajectory sampling

Figure 14: Magnetic reconnection simulation data [Zhou et al., 2016]
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Method 1: trajectory sampling

Figure 15: Particle trajectories [Zhou et al., 2015]
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Method 2: Forward Monte Carlo
Inject (randomly) particles in source regions where f is known, and follow
them until they reach the regions of interest.
Injected particles are tagged with a statistical weight wi based on the
number of injected particles per time ΓMC and the physical flux ΓPhys :

wi = ΓPhys

ΓMC

Statistical analysis of particles via sampling (binning) in x and v space
(which implies large statistical errors), and using wi . For instance:

n = 1
∆x3

N∑
i

wi (65)

Γx = 1
∆x3

N∑
i

vix wi (66)

f (x⃗ , v⃗) = 1
∆x3∆v 3

N∑
i

wi (67)

It is the most similar approach to the PIC method, but with non
self-consistent fields.
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Method 2: Forward Monte Carlo

Figure 16: Final energy spectra [Zhou et al., 2016]
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Method 3: Forward Liouville

It makes use of the Liouville’s theorem for f (i.e: only valid for the Vlasov
eq.)
Sampling is only in x⃗ space, implying smaller statistical errors.

Procedure is similar as Forward Monte Carlo, except for
Particles are tagged with the value of f at the injection point.
Momenta of f are computed using the scattered representation of f
f can be interpolated onto a structured grid

Within a spatial bin, the distribution of v⃗i is irregular, a unstructured grid
and interpolation are required
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Method 3: Forward Liouville

Figure 17: Forward Liouville scheme [Voitcu et al., 2012]
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Method 4: Backward Liouville

It also makes use of the Liouville’s theorem for f (i.e: only valid for the
Vlasov eq.)
No sampling: neither in x⃗ nor in v⃗ space, implying no statistical errors
(other than finite discretization or due to fields).
The procedure starts by choosing a given point x⃗ in space, choosing a
grid in velocity space at which f will be computed.
From each velocity v⃗i in the grid, particle trajectories are integrated
backwards in time.
When particles reach the source region at X⃗ with velocity V⃗i , the VDF is
set as f (x⃗ , v⃗i ) = f (X⃗ , V⃗i )
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Method 4: Backward Liouville

Figure 18: Backward Liouville scheme [Voitcu et al., 2012]
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Exercises

Exercise 1: Basic particle motion
Exercise 2: Particles trajectories in magnetic reconnection
Both can be executed from your browser on the following JupyterHub link:
https://notebooks.mpcdf.mpg.de/isss

The JupyterHub is based on a gitlab repository hosted at:
https:
//gitlab.mpcdf.mpg.de/munozp/test-particle-code-isss-14

Memory limit 4 Gb per notebook.
Please stop the server before closing the browser tab. This can be found
under: File − > Hub Control Panel − > Stop My Server
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Exercise 1: Basic particle motion

Investigate how various pushers impact the precision of the Larmor
motion in the magnetic field.
Investigate various particle drifts.
How the size of time step dt influences the precision of particle position?
Which of the particle pushers is the most precise?
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Exercise 2: Particles in magnetic reconnection
MHD simulation of magnetic reconnection (plasmoid/long current sheet).
Physical model: Resistive MHD + subgrid-scale turbulent model.
Parameters applied to Mercury’s magnetotail
Details in [Zhou et al., 2018], also at
https://arxiv.org/abs/1806.10665
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Figure 19: Out-of-plane current density jz of the MHD simulation [Zhou et al., 2018]
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Exercise 2: Particles in magnetic reconnection

Simple python code
1 read electromagnetic field data from MHD simulation snapshot

(grid: 12802x3202)
2 compute supplementary fields (like current density)
3 calculate electromagnetic fields at particles’ position (interpolation)
4 integrate particles using Lorentz force (TODO: guiding center

approximation) eq via Runge-Kutta 4th order (TODO: Boris pusher)
5 diagnostics (plots)

Normalizations, t0 = 1s, B0 = 7.5x10−8T , L0 = 2.5x104m, βp = 0.5
Integration parameters: dt = 0.13Ω−1

ce (10−5t0), tmax = 3t0.
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Exercise 2: Particles in magnetic reconnection

Determine locations where particle acceleration occurs and the physical
reasons (which field or drifts are responsible for it)
Compute electron trajectories on the current sheet and plasmoids (put all
particles at the same initial position, varying only the velocities)
Use protons instead of electrons
Use different solvers, such as the Boris pusher instead of RK4.
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The end

Thank you for your attention

Questions/Comments?
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