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Definitions

@ Phase space: Multi-dimensional space consisting of all particle
trajectories and momenta (velocities):
X1, Pty X2, P2y 5 XNy PN

@ Ensemble: Set of all microscopic state of a system consistent
with given macroscopic parameters (n, v, P)

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 1/59



Introduction
00®00000000

Distribution function and phase space

e f: Probability density for finding any particle in the phase
space volume element [x, x + dx], [y, y + dy], [z, z + dz] and
with velocities [vy, vy + dvi], [vy, vy, + dv, ], [V, vz + dVv;] such

that:
d®N = (X, V,t) x d®X x d®V

v

particle phase-space position
attime ¢

passing particle orbit
(positive velocity)

quasi-periodic orbit periodic orbit

X
& N2
passing particle orbit
(negative velocity)
.
Figure 1: Trajectories in phase space
Figure 2: Volume element in phase space
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Maxwell-Boltzmann distribution function

@ The Maxwell-Boltzmann distribution represent the thermal equilibrium. It
is a stationary and homogeneous solution of the kinetic equations.

Me 3/2 Mo V2
exp

fo = Moo | =———=— e ——
o (2kaT; ko Ta

a(vx)

n[m/(2ntkT)]"?

L
- (kTim)" o (kT/m)"?

Figure 3: 1D Maxwellian
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Full equations of motion

Full equations of motion

v. E()?, t) = p(%; t) (1)
€0

V.-B(%,t)=0 )

v x E(x, ) = - 28%0) 3
L . OE(R, t

V x B(X, t) = woJ(7, t) + Moeo—g; t) (4)
dVi o q gz = & Bl

=L B0 +7x BR, 1) ©)

pE =D qa/dv?’ D (% - )7 — %) (6)

J(z, 1) = an/d\ﬁ 7Y 8% —%)d(V — ) (7

But this approach is unpractical...
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Vlasov equation 1

@ Liouville's theorem: in absence of collisions, f is invariant following the
motion in the 6D phase space.
— Conservation of f(X,V,t) in phase space: df /dt =0

@ Convective derivative: d/dt = 9/0t + V-0/0X + 3-0/0V
@ Lorentz force: 3= (gq/m) (E + VX é)

- collisional r . collisionless

T+ dt

v

N >
v ° v

Figure 5: Collisions and conservation of phase space [Bittencourt, 2004]
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Vlasov equation 2

@ Note that here E and B are long-range averaged (in space and time)
macroscopic fields from all the plasma particles and external sources (but
no microscopic fields due to binary collisions).

Vlasov equation
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Fully-kinetic/Vlasov description

Fully-kinetic equations

v E=L (8)
€0
V-B=0 (9)
-~ 0B
VxE=-22 (10)
OE
VxB= qu + po€o—=— ot (11)
B B B )
57 g e (E7x8) la=0 G
pzzqa/dv3 fo (13)
= Z Ga / dv® vf, (14)
& J
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How to solve the Vlasov/plasma equation

@ Fluid/MHD: Solve for moments of f, ([ v"d*V (Vlasov eq.). n = 0:
density, n = 1: momentum, n = 2: energy/pressure/temperature)

@ Vlasov: Solve for f, directly
@ Simulate particles sampling f,:

o Particle-particle methods (N-body): scaling as N2
o PIC scales as ~ N

@ Hybrid models: part kinetic/Vlasov, part fluid.

@ Test particle methods: another way to bridge the gap between fluids and
kinetic models, providing first-order estimates of kinetic effects in
problems for which a fully-kinetic solution is not practical.
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Hierarchy of plasma physics models

@ Kinetic description: microscopic properties, it uses the velocity
distribution function f.

@ Fluid description: it uses a few macroscopic quantities, averages of the
distribution function (mean velocity, pressure/temperature). Valid for or
near thermodynamic equilibrium.

Plasma phenomena
Distribution Boltzmann
function equation
Moments of Boltzmann
equation
Single fluid
(MHD)

Figure 6: Hierarchy of plasma physics models

Single-particle
motion

Multiple fluids
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The test particle method

@ Obtain electromagnetic fields E, B from another methods or observations
(decoupling Maxwell equations).

@ Integrate particle trajectories using those electromagnetic fields via, e.g.,
@ Full Lorentz force:
dv; q rz2/- - B/
— = — |E(X;,t)+ V X B(X;, t 15
=1 [E, 1) (5. 1)] (15)
@ Guiding center approximation.
@ Use the trajectories to infer approximate kinetic properties of the system.

Note that this approach is not self-consistent, the particles do not have any
effect on the fields (no feedback or corrections).
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Particle motion in background magnetic fields

@ The basic motion of a particle under the influence of a static and uniform
magnetic field is the gyromotion.

@ Taking the dot product of Eq. (15) with V, we get

d 2
d(m?\ _,
dt 2
i.e., a static magnetic field cannot change the kinetic energy of a particle.
@ Assuming a magnetic field B = B2, Eq. (15) becomes:

m% = gBy, (16)
m% = —qBw« (17)
‘;‘f =0 (18)
and thus,
d;t‘f + Q% =0 (19)
i? +Q2v, =0 (20)

g
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Particle motion in background magnetic fields

@ Where the gyrofrequency (or Larmor/cyclotron) is:

a8
Q= - (21)

@ Solution
vx = vy cos (Qct + 1) (22)
vy = vy sin (Qct + ) (23)
v =y (24)

where 1) is an arbitrary phase angle.

@ By integrating we get,

X = pesin (Qect + ) + (x0 — resin) (25)
y = —pecos (Qct + 1) + (yo + re cos 1)) (26)
zZ=2z0+ vt (27)
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Particle motion in background magnetic fields

@ Where the gyroradius (or Larmor radius or cyclotron radius) is:

pe = lvi| _ mivi|
Q. [qlB

(28)

Note that this can be understood from force balancing the "centrifugal”

force:

2

= qu_B (29)
@ Particles move in circular/helical orbits with frequency Q. and radius p.
about the guiding center Ry = %x0 + ¥yo + 2(z0 + v t)

@ Note that particles with higher velocities orbit in circles with larger radii,
but same frequency.

@ Particles with larger masses orbit in circles with larger radii, but with
lower frequencies (longer periods).

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 13/59
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Particle motion in magnetic fields
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Particle motion in background magnetic fields

@ Pitch angle:
a=tan " (V—J‘> (30)
vii

@ Magnetic moment
qfdc 2 mVJ2_

(31)

H= o I~ 2B

area
current

@ The direction of the magnetic field generated by the gyration is opposite
to that of the external field: a plasma is a diamagnetic medium.
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E x B drift

@ Let us consider, in addition to B= 2B, an electric field: E= XE, + ZE).
The equations of motions are:

dvi

dVH
I gE
m— = 9k (33)

@ Let us decompose V| = Ve + Vac. By choosing:

. ExB
VE = T (34)
Eq. (32) becomes the eq. for gyration with frequency Q..
% = qisc X 2B (35)
@ The solution is then:
V(t) = 2v(t) + Ve + Vac(t) (36)

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 16/59
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E x B drift

@ The average of V over one gyroperiod is:
(V) =2v| + Ve (37)
so Vg is the average perpendicular velocity.

@ This drift arises from the difference in the local gyroradius between
top/bottom.

@ The E x B drift is independent on g, m and v, .

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 17/59
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Gradient B drift

@ Let us assume a magnetic field with intensity varying in the perpendicular
direction to the B-vector B(y) = 2B:(y).

@ This drift also arises from a force perpendicular to the magnetic field.
Generalizing the expression for the E x B force:

Ve = (F_i/g%é (38)

VB

" 000000000 b+

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 18/59
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Gradient B drift

@ In this geometry, the perpendicular force is

—

F = qv x B = %qv,B, — yqu«B, (39)

. 0B, N 0B,
Nxm@<%+y57>ym&<%+y8y> (40)

@ By assuming that particles follow approximately orbits in an uniform field
(Egs. (25)-(26)), we can determine the gyroaverage force F:

(F) = qvyrc 0B, _ mvf_ 0B,
YT 2 9y T 2B Oy

or more generally = %VB
(41)
@ This way, the grad-B (VB) drift velocity is:

. (FL/e)xB _(F)y x2B:
vy = =

B2 qB? (42)
2 2 B
B, . B B
= Z"‘;t %y or more generally = %XTY (43)
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Curvature B drift

@ In a curved magnetic field line, particles experience a centrifugal force
perpendicular to the B-field

—

- R.
Fer = mvf o5 (44)

which causes a drift perpendicular to both vectors.

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 20/59
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Curvature B drift

@ Curvature drift:

. (Fe/a)x B _
VR _—

= e (45)
2 = —
mvi R. x B

T g RB? (46)

@ In vacuo this drift cannot be the only one because V x B =0. A more
general expression due to both gradient and curvature drifts is:

Bx VB

Veotat = Vr + Vo = (vif + v1/2) 5

(47)
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Curvature B drift

@ Longitudinal drift of radiation belt electrons (and associated ring current
because of opposite ion/electron drift)

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB
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Adiabatic invariance of the magnetic moment

@ Magnetic moment p = —3 tends to be conserved as long as (spatial or
temporal) changes in B are small over a gyroradius or gyroperiod.

@ The particle’s perpendicular energy increases while its parallel energy
decreases as it moves toward regions of stronger B, until it eventually
reaches v| = 0 and it bounces back (magnetic mirror/bottle).

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 23/59
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Polarization drift

@ In a slowly varying electric field the so-called polarization drift appears:

m dE
oo _Mds 4
Vp qu dt ( 8)

@ This drift depends on the particles’ mass and charge, and it can change
the particle's energy.
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Guiding center approximation

@ Valid when the gyroradius (p = mv/qB) and gyroperiod
(x 1/€2 = m/qB) are much smaller than the length scale of transverse
gradients and characteristic oscillation periods of the background EM
fields

@ The motion of a charged particle is described in terms of variables
representing the gyration around B-field lines and the motion of its
guiding center.

@ For the solar corona, typical gyroradii are 10~3m for electrons and 1072m
for protons, much smaller than typical characteristic lengths scales.

PARTICLE

GUIDING CENTER

Res]

ORIGIN
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Guiding center approximation

@ Non-relativistic version [Northrop, 1963]:
dR . b = m{ db die L
ar _ 2B+ (2L L Eyp 4
P V|b+B><< +q<V|dt+ dt>+qv > (49)
dimvy) . db .

with: R: guiding center position, b unit vector along the B-field,
Ve = E x b/B is the E x B drift velocity and i = mv?3 /2B is the
magnetic moment.

@ In Eq. (49). 1st term: parallel motion, 2nd term: E x B drift, 3rd term:
curvature drift, 4st term: polarization drift, 5th is the gradient-B drift.
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2nd-order Runge-Kutta

@ It is based on the exact integration of
dy/dt = f(t,y)
tit1
Yit1 = yi+ / f(t,y)dt

tj

(51)

@ Finally, the value of yi 1,2
is obtained by the Euler’s
method:

Yis12 & yi + 2 (ti, i)

2nd-order Runge-Kutta (RK2)

@ The basis for RK2 is to approximate f(t,y) by
a Taylor expansion w/r to the middle point:

df
f(t,y) = f(tis1/2, YI+1/2)+(t_ti+1/2)E

tit1/2

@ Since the integral of the 2nd term vanishes,

Vie1 = yi + hf (ti)2, Yis12) + O(h%)

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de)

ZAAQ@TUB

Yit1 = Yi + ko
ki = hf(t,‘,y,')

h ke
ko = hf(ti + =, yi + —
2 (t~|—2y+2)

@ The local/global error is
O(h*)/O(K?).
@ Here h= At
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Runge-Kutta methods: General derivation

@ The family of Runge-Kutta methods are derived from the following Taylor
expansion, without explicit calculation of the derivatives:

y(tia) = (b -+ h) = y(8) + hy'(8) + /() + -+

@ In particular, RK2 is obtained by finding the constants a1, az, p1, g11 such
as the following formula coincides with the Taylor expansion to 2nd order:
Yit1r = Yi + arky + 22/(27 con
ki = hf(t,-,y,-)
ko = hf(ti + p1h, yi + quikih)

@ The solution is:

at+a=1 a _ 1 a _ 1
1 2 =1, 2p1—2, zqn—2

@ Since there are 3 eqgs but 4 unknowns, there is some freedom of choice-
By choosing a> = 1/2, we get the (improved) Euler's method. Choosing
a =1, we get RK2 with a1 =0, p1 =1/2, ¢ =1/2.

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 28/59
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4th-order Runge Kutta

@ By considering more terms in the Taylor expansion, it is possible to
improve the precision of RK2. The most popular algorithm (since the XIX
century) is:

4th-order Runge Kutta (classic RK, RK4)

1
Yir1=Yyi+ a(kl + 2ko + 2ks + ka)

ki = hf(t,-,y,-)

_ . h . kl
k2—hf(t:+2,y,+2)
_— . h . k2
ks—hf(t:+2,y,+2)

ks = hf(t; + h, yi + k3)

@ Global/local error O(h°)/O(h*)
@ RK4 estimates the value of y;11 by averaging 4 slopes

@ It provides a good balance between accuracy and computational cost

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 29/59
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4th-order Runge Kutta

Yo+ hks

Yo+hka/2
Yo+hky/2

Yo ¢

to to+h/2 to+h

Figure 7: Slopes used for the Runge-Kutta method
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4th-order Runge Kutta

—o— Exakte Losung

—o— Klassisches Runge-Kutta
—e— Heun

—e— Euler (halbe Schrittweite)
204 ~o— Euler
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Symplectic methods

@ When we apply conventional methods like Euler’'s or RK to a Hamiltonian
system, it causes an artificial excitation or damping.

@ For autonomous Hamiltonian systems:
dqg OH dp oH
dt — 9p’ dt  0q
H is conserved and the two-form dp A dg = constant (Jacobian)
@ A numerical integration scheme satisfying those two properties is
symplectic, they preserve the phase space density. They conserve the
energy (time-reversible).

@ Assuming known the Hamiltonian (~ energy) of the system, symplectic
methods can be written by an n-iteration of:
Xi = Xj—1 + GAt xj_1 (52)
vi = vi—1 + diAt a(x;) (53)
where a = F/m and ¢;, d; are constants.

@ There are explicit symplectic algorithms for separable Hamiltonians:
H = T(p) + V(q) (conservative systems). Note that unfortunately the
Hamiltonian of charged particles in EM fields is not separable:
H(B, %) = (1/2)(B — A)? + ¢. More info: [Yoshida, 1993]

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 32/59
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Verlet's algorithm

@ Example for the 2nd Newton's law: using a finite central difference of 2nd
order for d’x/dt> = F/m = a, and central difference for the first
derivative dx/dt = v

@ Thus, we get an algorithm very useful for N-body problems, which is also
symplectic: i = =1/2, di =1, d» =0.

Verlet's (Stérmer) algorithm

Xiy1 = 2% — X1+ (At)23i + O(At)4
. 1

Vi = 5A: (>_<}+1 - )?i—l) a4 O(At)2

@ The local/global error is O(h*)/O(h?).

@ |Initialization: multistep method: 2 initial positions are required: Xp y X,
but we have only the initial conditions Xp y Xp. We can assume
F = constant in the first interval [0, At], so that we can use
X~ X+ Aty + §0At2/2

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 33/59
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Velocity Verlet

@ 2nd-order method, where V and X are simultaneously calculated. Similar
standard Verlet. Algorithm:
©Q V.12 = Vo + 3,At/2 (constant coordinates)
Q X1 =X+ Vor1 oAt = X, + VoAt + 3,At%/2 (constant velocities)
©Q 1 = 3(Xn1, tar1)
Q Vo1 = Vo120 + 31 At/2 =V, + (At/2)(3, + nr1) (constant
coordinates)
@ Advantage over classical Verlet: only one initial value for X and V are
needed, less round-off errors

"

Ve

Vn

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 34/59
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Leapfrog method

@ 2nd-order symplectic method where X and v are calculated alternatively
(X in multiples of At and velocities in half-integer multiples of At).
Otherwise is similar to velocity Verlet. It is equivalent to use different
grids for X and V, shifted in At/2.

©Q Voi1/2 = V12 + 3.At (constant X)
Q Xni1 = Xo + Vop12AAt (constant V)

Va1

Vni1/2

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 35/59
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Boris algorithm

@ Specifically used to advance particles in plasma simulations (it is the de
facto algorithm).

@ It has very good conservation properties: it conserves phase space
volume, even though it is not symplectic [Qin et al., 2013]

@ Discretized Lorentz force:

gL/ _ gi—1/2 -
2 "2 54
At v (54)

l—ji+1 _ L—ji B (—'I+1 )
TAr om ( > (53)

with = V. Note in the RHS of the acceleration eq. the average
velocity (V1 4 v')/2 = v'*1/2

@ The idea of the Boris algorithm is to separate the electric and magnetic
force in 3 parts: first half of the electric force is determined, then the full
magnetic force (rotation) and finally the second half of the electric force.

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 36/59
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Boris push

- U q2AtEl+l/2

q /. .
-2 (v:+1/2 « B/+1/2)

i " At 2
gl = gt + q Eit+1/2

2m
Rotation by

B-field
Q ,Boris-

Action of the
Uniform accel. force to 1st order /
by the E-field

in 2 steps — /

Physical motion

(o]

Figure 9: Boris push
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Boris push

@ The phase angle of the rotation (2nd part):

9= EBi+1/2 (56)
my~—

@ The rotation is solved in this way:

i=u +id xt (57)
S L 2
it=1i +1+t2(u x t) (58)
with .
= tan(0/2)b"/? (59)

@ Sometimes the previous equation is approximated as t = (0/2)5 (see a
comparison in [Ripperda et al., 2018, Zenitani and Umeda, 2018])
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Integration of particle trajectories
00000000e00000

Boris algorithm

10]
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Boris algorithm

-
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=
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Normalized energy error

o
b

Time
Figure 11: Comparison of energies of a charged particle moving in a given B-field, with its trajectory calculated
using the RK4 and Boris algorithms [Qin et al., 2013]
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Vay pusher

@ Another particle pusher specifically developed for relativistic particles
[Vay, 2008].

@ It is based on a modification of the Boris algorithm that is designed to
avoid spurious perpendicular electric fields due to the relativistic Lorentz
transformation of the EM-fields.

@ It preserves the ExB velocity (regardless the value of At), also in the
relativistic case, so it has attracted attention for applications to
laser-plasma interactions and relativistic astrophysics.

@ [t does not conserve the phase space volume.
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Vay pusher

@ In the part 2 (rotation) of the Boris algorithm, the average velocity is
calculated as:

e _ 2Ty (60)
2,Yi+1/2
with
i - At =,
SH2 \/1Jr (7,\7,+ q E,+1/2) (61)
2m
@ In the Vay's algorithm, this average is instead calculated as:
) Si i+l
it %% (62)
2
which comes from considering the special case E+ vV x B=0in the
original Boris algorithm, and leads to the rotation step:
’Yi+17i+1—7fvi _ 9 pit1/2 | Sitl/2 o Bitl/2

whose solution leads to a two-step procedure for 7"*'/? and then & (with
i =~'V' [Vay, 2008]
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Vay vs Boris pushers
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FIG. 2. (Color online) X and ¥ positions vs time step of a particle accelerated by a constant electric field £, as computed in the laboratory (left) or in a frame
moving along § at y=100 (right).
Figure 12: [Vay, 2008]
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Vay vs Boris pushers

(drift velocity)/(analytic drift velocity)
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Fig. 6. E x B drift motion for the Vay and Boris movers as a function of w.At. The y-
axis gives the ratio of the drift velocity measured in the simulation to the analytic
drift velocity.

Figure 13: [Belyaev, 2015]
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The test particle method

@ Obtain electromagnetic fields E, B from another methods or observations
(decoupling Maxwell equations).

@ Integrate particle trajectories using those electromagnetic fields via, e.g.,

@ Full Lorentz force:

dv; q

- =4 [E(z,-, t) + 7 x B(%, t)} (64)
@ Guiding center approximation.
@ Use the trajectories to infer approximate kinetic properties of the system.

Note that this approach is not self-consistent, the particles do not have any
effect on the fields (no feedback or corrections).

@ There are 4 formulations of the test particle method
[Marchand, 2010, Voitcu et al., 2012]
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Method 1: trajectory sampling

@ It solves individual representative trajectories (the choice is not trivial)

@ Useful to visualize aspects such as particle transport or energetics

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB 46/59



Test particle methods
00080000000

Method 1: trajectory sampling
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Figure 14: Magnetic reconnection simulation data [Zhou et al., 2016]

Patricio Mufioz (pmunoz@astro.physik.tu-berlin.de) ZAAQ@TUB



Test particle methods

O000@000000

Method 1: trajectory sampling
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Figure 15: Particle trajectories [Zhou et al., 2015]
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Method 2: Forward Monte Carlo

@ Inject (randomly) particles in source regions where f is known, and follow
them until they reach the regions of interest.
@ Injected particles are tagged with a statistical weight w; based on the
number of injected particles per time 'y and the physical flux Ippys:
_ Tens
- Tme
@ Statistical analysis of particles via sampling (binning) in x and v space
(which implies large statistical errors), and using w;. For instance:

N
n— & S w (65)
o
M= m Z Vix Wi (66)
1 ’ N
f()?, \7) = m Z wi (67)

i

@ [t is the most similar approach to the PIC method, but with non

self-consistent fields.
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Figure 16: Final energy spectra [Zhou et al., 2016]
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Method 3: Forward Liouville

@ It makes use of the Liouville's theorem for f (i.e: only valid for the Vlasov
eq.)

@ Sampling is only in X space, implying smaller statistical errors.

@ Procedure is similar as Forward Monte Carlo, except for

o Particles are tagged with the value of f at the injection point.
@ Momenta of f are computed using the scattered representation of f
@ f can be interpolated onto a structured grid
@ Within a spatial bin, the distribution of V; is irregular, a unstructured grid
and interpolation are required
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Method 3: Forward Liouville

at time =0 at time 7> 0

1 1 1 1 1 1 1 1 1 1 1 1
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4’7 s dF o

_l=l E+ZL «B

N N N N N N = m 4 N N N N N N
Xo Yo Z0 Vi Ve Voo .! Xy R M M

Displaced Maxwellian: |:> f at the end of the simulation

T Oagr Vuor Vi) FORWARD APPROACH: S 03,20, 7, v)
positive time step A7 > 0

~" PN

Liouville’s theorem:
S S ) <] [> i fE e £
along a particle trajectory df/dr=0

Figure 17: Forward Liouville scheme [Voitcu et al., 2012]
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Method 4: Backward Liouville

@ It also makes use of the Liouville's theorem for f (i.e: only valid for the
Vlasov eq.)

@ No sampling: neither in X nor in V space, implying no statistical errors
(other than finite discretization or due to fields).

@ The procedure starts by choosing a given point X in space, choosing a
grid in velocity space at which f will be computed.

@ From each velocity v; in the grid, particle trajectories are integrated
backwards in time.

@ When particles reacb the source region at X with velocity V;, the VDF is
set as f(X, V;) = f(X, V))
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at time =0
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Method 4: Backward Liouville

B=B(x), E=E(x,y)

{————

BACKWARD APPROACH:
negative time step A7 <0

Liouville’s theorem:

along a particle trajectory df/dr=0
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Figure 18: Backward Liouville scheme [Voitcu et al., 2012]
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Exercises

@ Exercise 1: Basic particle motion
@ Exercise 2: Particles trajectories in magnetic reconnection

@ Both can be executed from your browser on the following JupyterHub link:
https://notebooks.mpcdf .mpg.de/isss

@ The JupyterHub is based on a gitlab repository hosted at:
https:
//gitlab.mpcdf .mpg.de/munozp/test-particle-code-isss-14

@ Memory limit 4 Gb per notebook.

@ Please stop the server before closing the browser tab. This can be found
under: File — > Hub Control Panel — > Stop My Server
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Exercise 1: Basic particle motion

@ Investigate how various pushers impact the precision of the Larmor
motion in the magnetic field.

@ Investigate various particle drifts.
@ How the size of time step dt influences the precision of particle position?

@ Which of the particle pushers is the most precise?
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Exercise 2: Particles in magnetic reconnection

@ MHD simulation of magnetic reconnection (plasmoid/long current sheet).
@ Physical model: Resistive MHD + subgrid-scale turbulent model.
@ Parameters applied to Mercury's magnetotail

@ Details in [Zhou et al., 2018], also at

https://arxiv.org/abs/1806.10665

Jz
80

70

601 - — - m— - -

50

> 40 0

30

20 {)-o—— — — - —

10

0

0 50 100 150 200 250 300
X

Figure 19: Out-of-plane current density j, of the MHD simulation [Zhou et al., 2018]
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Exercise 2: Particles in magnetic reconnection

@ Simple python code
@ read electromagnetic field data from MHD simulation snapshot
(grid: 12802x3202)
@ compute supplementary fields (like current density)
© calculate electromagnetic fields at particles’ position (interpolation)
@ integrate particles using Lorentz force (TODO: guiding center
approximation) eq via Runge-Kutta 4th order (TODO: Boris pusher)
@ diagnostics (plots)
@ Normalizations, ty = 1s, By = 7.5x1078 T, Ly = 2.5x10*m, 8, = 0.5

@ Integration parameters: dt = 0.13Q%" (10™°ty), tmax = 3to.
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Exercise 2: Particles in magnetic reconnection

@ Determine locations where particle acceleration occurs and the physical
reasons (which field or drifts are responsible for it)

@ Compute electron trajectories on the current sheet and plasmoids (put all
particles at the same initial position, varying only the velocities)

@ Use protons instead of electrons

@ Use different solvers, such as the Boris pusher instead of RK4.
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