

Bringing together HPC and QC: it is mainly a software challenge! Martin Schulz, TU Munich IPELS/ISSS @ IPP Garching, August 8th, 2024

The role of HPC in Science and Industry Modeling and Simulation as the Third Leg of Scientific Discovery

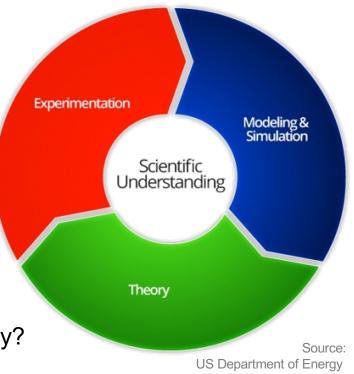
HPC has become indispensible

- Supporting theory and experiments
- Fundamental to the scientific process

The role of HPC in Science and Industry HPC as the Third Leg of Scientific Discovery

HPC has become indispensible

- Supporting theory and experiments
- Fundamental to the scientific process


Working with plasma simulation codes

- Collaboration on Gene and Gene-X codes at IPP
- PLASMA Center of Excellence
 - EuroHPC Center of Excellence

Goal: How to get more performance/science?

- · In addition to algorithmic work done
- How to improve GPU utilization and energy efficiency?
- · How to tune memory access patterns?
- How to optimize communication?

Top 500 HPC Systems The Growth Trend is Slowing

Node performance growth is slowing

- End of Dennard Scaling
- · Nearing the end of Moore's Law

System size growth is slowing

- Power and energy
- Physical limitations

Era of Acceleration via Specialization

- GPUs and FPGAs
- Specialized AI systems

But: No fundamental change in complexity

Martin Schulz, TU Munich, Seminar Series Quantumness: from Logic to Engineering and back @ IAS, July 3rd, 2024

10 EFlop/s 1 EFlop/s 100 PFlop/s 10 PFlop/s 1 PFlop/s ^Derformance 100 TFlop/s 10 TFlop/s 1 TFlop/s 100 GFlop/s 10 GFlop/s 1 GFlop/s 100 MFlop/s 1990 1995 2000 2005 2010 2015 2020 2025 Lists 500 Sum #1 #500

Performance Development

top500.org

TIM Irz

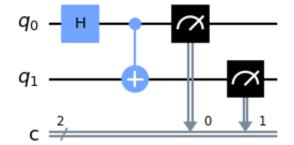
What is all the Fuzz About? The Promise of Quantum Computing

System working on quantum mechanical principles

- Superposition = Multiple States at one time (until measured)
- Entanglement = Correlation between states in a system
- Probabilistic

Basic unit = 1 Qubit

- Can be in superposed and/or entangled state
- When read: 0 or 1 only (rest collapses)


Programming with gates

- Operations on qubits
- Different systems have different gates

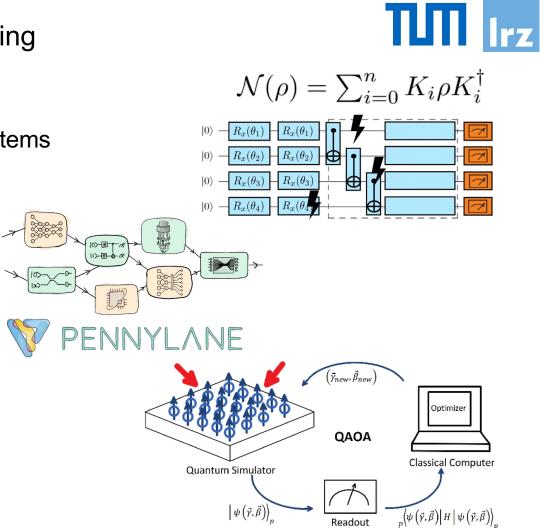
Quantum Advantage

 Some quantum algorithms require exponentially less steps than classical algorithms

Martin Schulz @ LLNL, March 25th, 2024

From: <u>https://docs.quantum.ibm.com/api/</u> <u>qiskit/qiskit.circuit.QuantumCircuit</u>

What is all the Fuzz About? Applications for Quantum Computing


Main Application Domains

- Quantum simulation of quantum systems
- Quantum optimization
- Quantum machine learning
- Quantum linear systems

Problems:

- Small number of qubits
- Noisy systems
- Only few working algorithms
- Specialized programming
- Still treated as physics experiments

Martin Schulz @ LLNL, March 25th, 2024

The Munich Quantum Valley initiative develops quantum computation and quantum technologies in Bavaria.

Superconducting. Ion. Neutral Atom. Quantum-HPC.

HPCQC Integration Quantum Computing $\leftarrow \rightarrow$ HPC

Usage exclusively as accelerator for HPC workloads

- Intended for fine-grained kernels within larger applications or workloads
- Need classic pre- and post-processing
- Only certain problems are suitable for quantum computing: optimization, quantum simulations

Goal: Use of QC similar to other accelerators

- On-node (like GPUs, FPGAs)
- Dissaggregated (like AI HW)

Quantum Computing as a stand-alone system not viable at growing scales

- Complex control systems
- Data staging and post-processing
- Targeted towards very specific workloads and kernels
- Tight interactions needed for variational algorithms
- Complex compilation and runtime environment with high demands need HPC

Quantum Computing = High-Performance Computing

Must see HPC and QC as a single HPCQC system

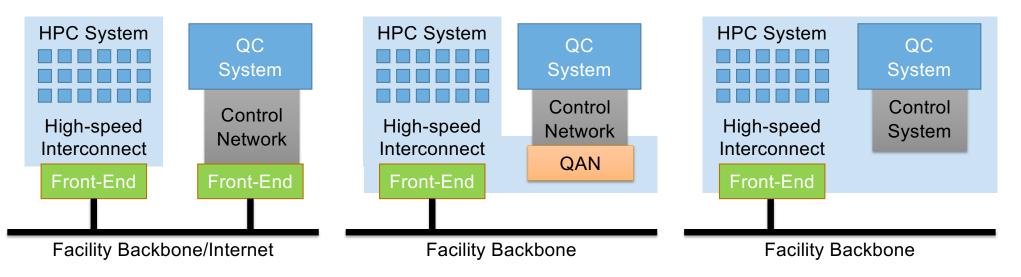
Requires close hardware integration (single system) for latencies and management
 Requires deployment in HPC centers

Step 1: Hardware Integration

Typical Quantum Computer Setup Example: Neutral Atoms photonic integrated device lasers Leibniz Supercomputing Centre camera control unit

Martin Schulz, TU Munich, Seminar Series Quantumness: from Logic to Engineering and back @ IAS, July 3rd, 2024

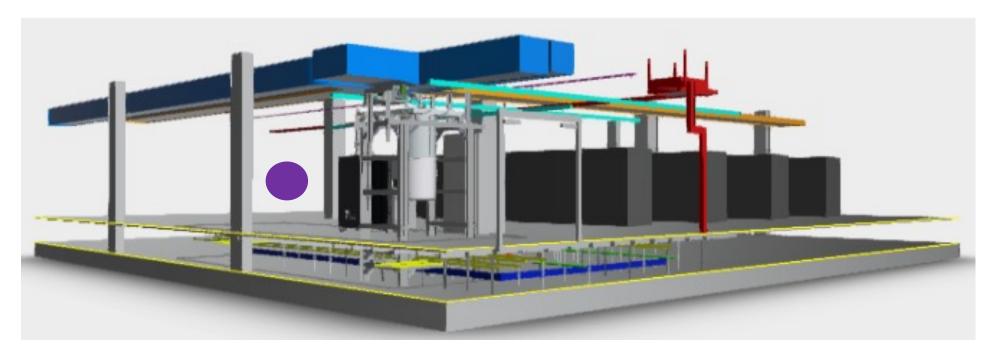
TIM Irz


Typical Structure Today

- "Medium" for Qubits
- Control via external influence
 - Lasers, Microwaves, ...
- Separate control system
- Connected to an access node
 - In lab settings, often simple
- Remote access from HPC to the access node

Source: MPQ

HPCQC Integration: Hardware Integration Reducing the Gap between Host and Accelerator



Evolution from network integration to system image integration to on-node integration

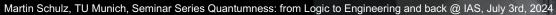
TIM Irz

LRZ QC and HPCQC Integration Location of Production QC systems in LRZ Compute Cube

Planned location of System Q-Exa (shown) and Euro-Q-Exa system (to the left of Q-Exa, purple dot).

Quantum Systems at LRZ

Superconducting


System 1: 5 qubits (R&D system) Vendor: IQM Up and running in QIC

System 2: ca. 20 qubits (R&D system) Vendor: IQM Up and running in QIC

System 3: 20 qubits (Production) Vendor: IQM Soon available to Bavarian, German and European users in <u>pilot phase</u>

System 4: 50+ qubits (Euro-Q-Exa-1) Vendor: TBD Target: Bavarian, German and European users EuroHPC procurement in process

Phase 2: 100+ qubits (Euro-Q-Exa-2) Vendor: TBD Target: Bavaran, German and European users EuroHPC procurement in process

Quantum Computing = High-Performance Computing

Must see HPC and QC as a single HPCQC system

Requires close hardware integration (single system) for latencies and management
 Requires deployment in HPC centers

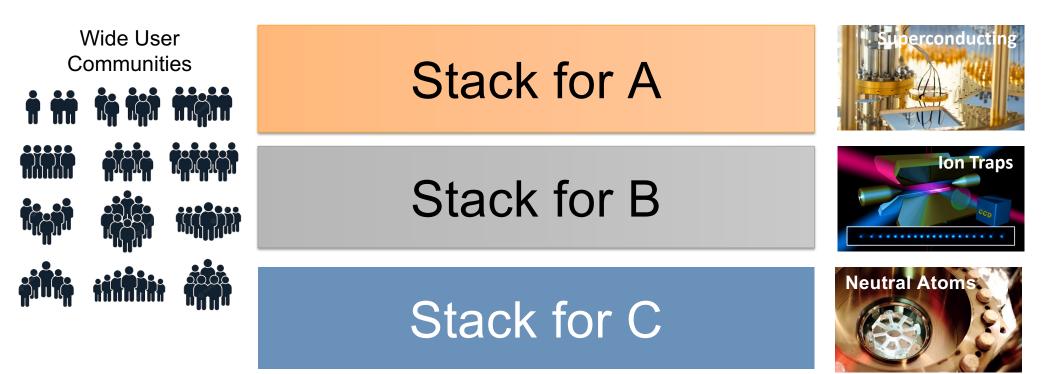
Requires integration into a single software stack and execution environment

Requires unified user access/management/experience

Martin Schulz, TU Munit

The Role of Software Towards Support for Multiple Communities on Multiple Systems

Martin Schulz, TU Munich, Seminar Series Quantumness: from Logic to Engineering and back @ IAS, July 3rd, 2024



Many/Different Quantum Devices The Role of Software How *not* to do it!

Many/Different Quantum Devices

The Munich Quantum Software Stack (MQSS) Connecting Users to Systems

Wide HPC User Communities

HANDAN

Martin Schulz et. Al, Towards the Munich Quantum Software Stack, Poster at QCE Weel 2023

Enabling Domain User Communities to Compute on Quantum Devices

QCs & Simulators

The Munich Quantum Software Stack (MQSS) Front-End / Languages

Martin Schulz et. Al, Towards the Munich Quantum Software Stack, Poster at QCE Weel 2023

Different Programming Models

- Standard approaches like Qiskit/Pennylane
- Higher-level abstractions
- New developments
- HPCQC approaches, like OpenMP
- Domain specific support

Decoupled from compilation stack

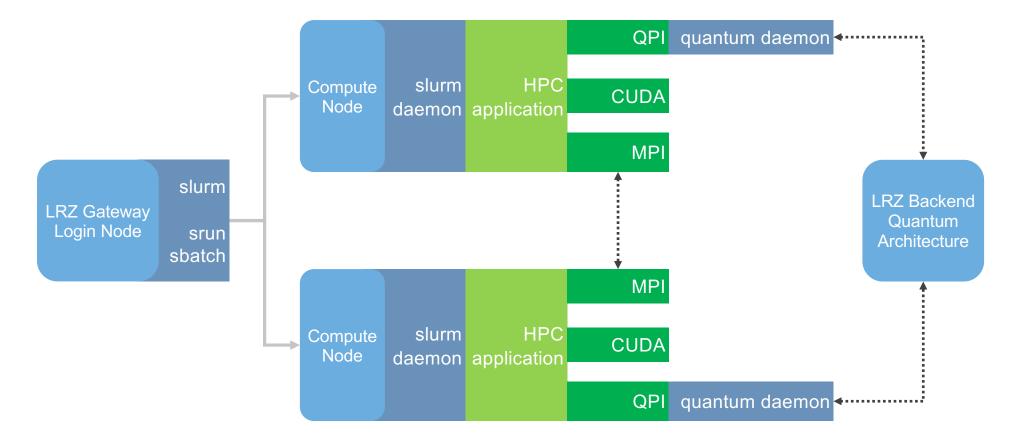
- Multiple front-ends, one backend
- Translation into standard format
 - QIR establishing itself as standard
- Result: Templated circuits

QCs &

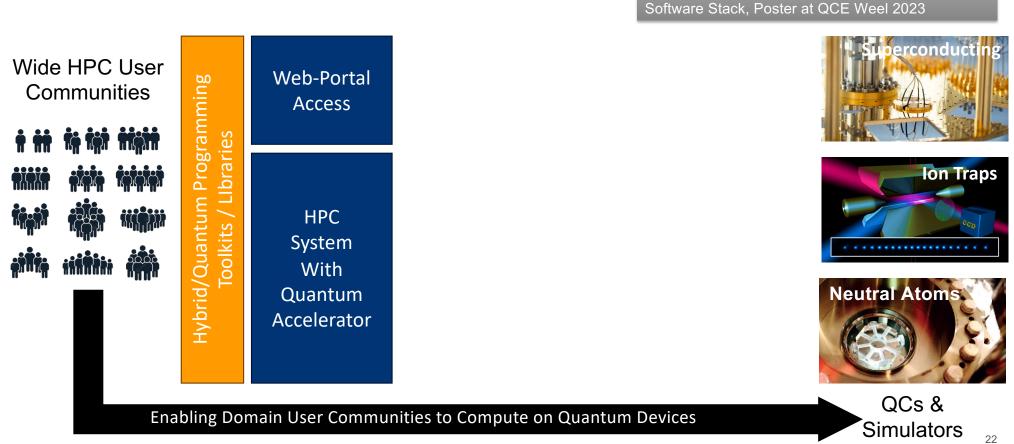
Simulators

19

Enabling Domain User Communities to Compute on Quantum Devices


The Munich Quantum Software Stack (MQSS) **Quantum Programming Interface**

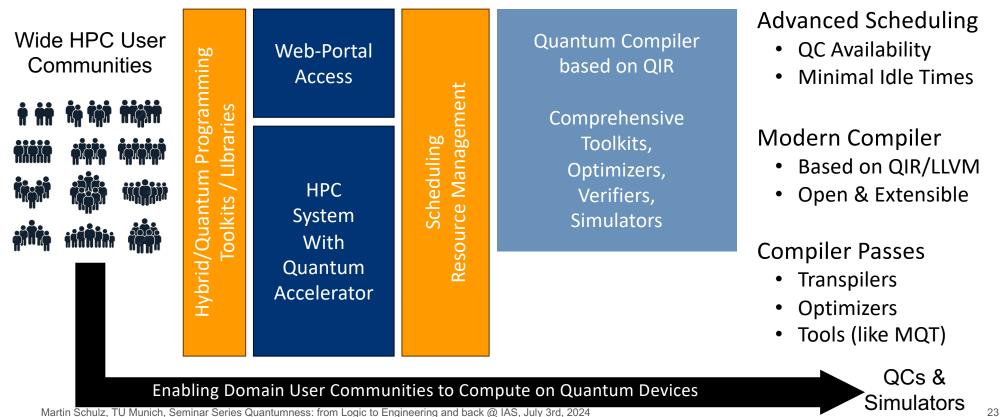
- Aims to provide similar abstraction to Qiskit
- Abstracts architecture and vendors to avoid lock in
- Users are legacy HPC applications
- State machine interface for quantum task programming
- Maps well to task-offload model and doesn't force data structure


1	#define QPI_1	
2	<pre>#include <qpi.h></qpi.h></pre>	
3	<pre>#include <qpi.h> #include <stdio.h></stdio.h></qpi.h></pre>	4
4		
5		
6	<pre>void bell_0() {</pre>	
7	Qcircuit circuit;	
8	Qstatus status;	
9		
10	<pre>int states = 4;</pre>	
11	int shots = 1000;	
12		
13	<pre>// 4 states can exist with 2 qubits</pre>	
14	<pre>int output[states];</pre>	
15		
16	<pre>qCircuitBegin(&circuit);</pre>	
17		
18	qH(0);	
19	qCX(0, 1);	
20		
21	<pre>qMeasure_all();</pre>	
22		
23	<pre>gCircuitEnd();</pre>	
24		
25	<pre>qExecute(circuit, shots, &status);</pre>	
26	<pre>qWait(status);</pre>	
27		
28	<pre>qRead(status, QPI_READ_ALL_STATES, (int*)&output);</pre>	
29		
30	<pre>for(int state_idx=0; state_idx < states; state_idx++)</pre>	{
31	<pre>printf(" %d>: %d", state_idx, output[state_idx]);</pre>	-
32	}	
33	}	20

TIM Irz

The Munich Quantum Software Stack (MQSS) HPC Accessing QC via QPI

The Munich Quantum Software Stack (MQSS) Access Modes

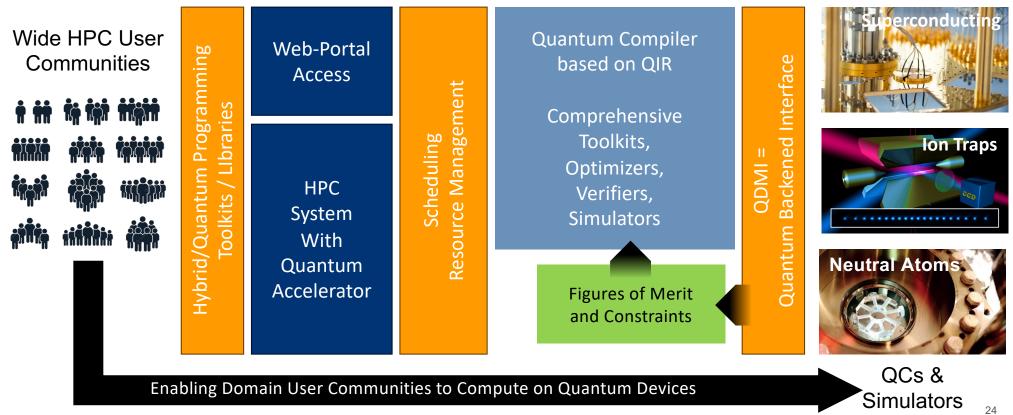

TIM Irz

Martin Schulz et. Al, Towards the Munich Quantum

The Munich Quantum Software Stack (MQSS) Quantum Scheduler and Compiler

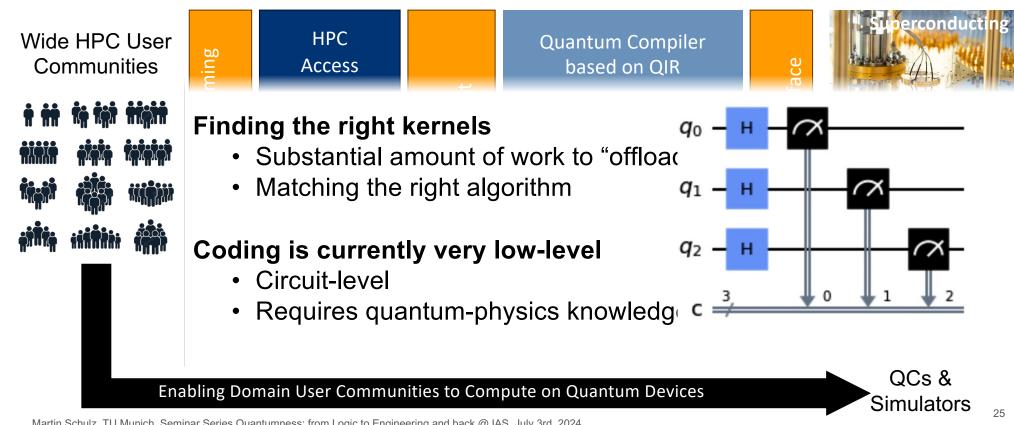
TIM Irz

Martin Schulz et. Al, Towards the Munich Quantum Software Stack, Poster at QCE Weel 2023



Bringing together HPC and QC: it is mainly a software challenge!, Martin Schulz @ ISC-HPC 2024, Hamburg, May 14th, 2024

A Comprehensive Runtime and Scheduling Software Stack QDMI: API for System Control and Feedback



Martin Schulz et. Al, Towards the Munich Quantum Software Stack, Poster at QCE Weel 2023

What's next? Challenges for the End-User

Bringing together HPC and QC: It is mainly a software challenge

Quantum Computing as one Option to Continue Scaling

- Further support computational demands for simulations
- New computational paradigm
- Applications and algorithms as well as size still very limited

A Comprehensive Software Stack is Key for QC Systems

- Enables wide range of user communities
- Delivers efficient workflows from code to optimized pulses
- Must be deeply integrated with HPC systems for hybrid usage
- Single stack build on top of established HPC technology

The Munich Quantum Computing Software Stack

- Portal and HPC access to heterogeneous backends
- New programming models for direct access
- Efficient compilers and optimizers
- Comprehensive tools for verification and optimization

Acknowledgements It takes a team, or rather many teams!

CAPS Team @ TUM

https://www.hpcqc.org/ https://www.munich-quantum-valley.de/

Bayerisches Staatsministerium für Wissenschaft und Kunst

QCT Team @ LRZ

Federal Ministry for Economic Affairs and Climate Action

CDA Team @ TUM

Bringing together HPC and QC: It is mainly a software challenge

Quantum Computing as one Option to Continue Scaling

- Further support computational demands for simulations
- New computational paradigm
- Applications and algorithms as well as size still very limited

A Comprehensive Software Stack is Key for QC Systems

- Enables wide range of user communities
- Delivers efficient workflows from code to optimized pulses
- Must be deeply integrated with HPC systems for hybrid usage
- Single stack build on top of established HPC technology

The Munich Quantum Computing Software Stack

- Portal and HPC access to heterogeneous backends
- New programming models for direct access
- Efficient compilers and optimizers
- Comprehensive tools for verification and optimization

