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Astrophysical	Context



Jets	from	Active	Galactic	Nuclei	(AGN)

• Powerful	jets	are	produced	in	the	central	
regions	of	(some)	radio-loud		Active	Galactic	
Nuclei	(AGN);

• Characterized	by	non-thermal		emission	from	
the	radio	to	the	X-rays	and	g	bands;

• Extends	from	a	few	Kpc	to	some	Mpc;

• Convincing	evidence	of	supersonic	relativistic	flows	propagating	in	partially	ordered	
magnetic	fields.



Observations	of	AGN	Jets

• Direct	observations	of	radio-galaxies:
o radio	luminosity	that	is	1039	-	1044	ergs/s;
o Polarization	degree	1%	-	30%;
o size	from	a	few	kpc	to	some	Mpc;	
o the	morphological	brightness	distribution
o polarization	degree	of	the	radio	emission.

• By	indirect	means:
o life	timescale,	107	-	108	yrs
o mean	magnetic	field,	10	–	103	μG,
o kinetic	power,	1042	-	1047	ergs/s.

• The	values	of	the	jet	main	physical	parameters,	such	as	jet	
velocity,	density	and	composition,	are	still	under	debate	after	
many	decades	of	investigations.



• Spectral	energy	distribution	(SED)	features	two	broad	humps:

• Strong	 variability	 on	 timescales	 ≲	 day	à	 very	 compact	 emission	 regions	 where	 a		
sizeable	fraction	of	the	jet	energy	flux	must		be	dissipated.	

• Part	 of	 this	 energy	 becomes	 available	 to	 accelerate	 particles	 to	 ultra-relativistic	
energies.		

AGN	Jets:	Emission

lower energy peak (mm-UV band) 
à synchrotron emission

higher energy peak (X- and γ-rays) 
à inverse Compton scattering.



Dissipation	at	the	Small	Scales

Zooming	at	smaller	scales,	dissipation	mechanisms	may	operate	such	as

• Collisionless	 relativistic	 shocks:	 dissipate	 kinetic	 energy	 into	 heat	
very	efficiently.
• prominent	sites	for	particle	acceleration	through	Fermi	1st	order	process.	
• Efficiency	limited	to	almost	∥ field	geometries	or	weakly	magnetized	flows1;

• Relativistic	 magnetic	 reconnection:	 more	 promising	 candidate	 for	
producing	 high-energy	 particles	 and	 powering	 jet	 emission	 at	 small-
scales2.

• Velocity	Shear:	particles	can	gain	energy	by	scattering	off	small-scale	
magnetic	 field	 irregularities	within	 the	 turbulent	velocity	 layer	at	 the	
jet	/	ambient	interface3.

1Sironi & Spitkovsky 2009, 2011; 2Giannios 2013, Sironi & Spitkovsky 2014; 3Alves et al. 2014

Dissipation
regions



Model	Equations	&	Numerical	Approach



Equation	Model:	Resistive	Relativistic	MHD
• For	 !≠0,	 the	 equations	 of	 (resistive)	 relativistic	 MHD	 (ResRMHD)	 derived	 from	
baryon	 number	 conservation,	 total	 momentum-energy	 conservation	 and	
Maxwell’s	equations	(Ampere’s	law):

where Mass density

Energy Density

Momentum Density

Maxwell Stress

Current Density [J’= ! E’]

Constraints



Equation	Model:	Resistive	Relativistic	MHD
• ResRMHD eqns admits 10 propagating modes*, 

easily recognized in the small/large conductivity 
limits: 

§ for η → ∞, matter and EM fields decouple; solution 
modes à pairs of light and acoustic waves (+ purely 
damped modes);

§ for η → 0 (ideal) limit, modes à pair of fast 
magnetosonic / slow / Alfvén modes. The contact mode 
unaffected by the conductivity.

! Important: resistivity is collisional in origin:

[*] Mignone, Mattia & Bodo, Phys. Plasma 25, 092114 (2018)



Numerical	method:	Finite	Volume	Formulation
• We	employ	finite	volume,	so	that	integrating	the	previous	differential	equations	
over	a	control	volume,	yields	(for	zone-centered	variables):

				where

			and	 U=(D,	m,		ℇ,	E)	is	an	array	of	conserved	variables
• This	is	called	the	integral	form	of	the	equations.	



Finite	Volume	+	Constrained	Transport

• Magnetic	fields	retains	a	staggered	representation	(face-centered)	and	it	is	evolved	
through	a	discrete	version	of	the	Stokes	theorem,

	 where,	e.g.

• This	ensure	that	∇∙B=0	condition	is	respected	to	machine	
				accuracy.



Flux	Computation	à	Riemann	Solver

• In	1D															à

• Fluxes	computed	by	solving	the	so-called	“Riemann	Problem”,	i.e.,	the	evolution	of	a	discontinuity	
separating	two	constant	states:

• Solution	always	considered	to	be	discontinuous	at	cell	interfaces:	different	level	of	approximation	
can	be	used*.
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[*] Mignone  et al, MNRAS, 486, 4252-4274 (2019)



Extension	to	4th-Order	Method

• We	draw	on	the	original	formulation	by	McCorquodale	&	Colella	(2011)*	and	**.

• Volume	average	and	point	value	interchangeable	only	at	2nd	order:

• To	4th	order,	e.g.																																																																						with

• “De-averaging”	using	Laplacian	operators:	

• Averaging	follows	the	inverse	rule,	e.g.	

• In	its	simplest	form,	a	4th	-	order	scheme	can	be	designed	by	retaining	the	typical	dimension	
by	dimension	strategy	while	relying	on	1D	operators.

[*]McCorquodale & Colella, Commun. Appl. Math. Comput. Sci. 6(1): 1-25 (2011)          [**]Felker & Stone , JCP 375, 1365 (2019)



Time	Stepping:	Handling	Stiffness

• Time	evolution	based	on	semi-discrete	approach	(method	of	
lines),	with	stiff	source	(!	≪	1)	term

• à	IMplicit-Explicit	(IMEX)	RK	methods*:

[*]    Pareschi L., Russo G., 2005, Journal of Scientific Computing, 25, 129

IMEX-SSP3(4,3,3) L-stable  [*]

Butcher Tableaux for SSP3(4,3,3):



Accuracy	Assessment:	CP	Alfvén	Waves
• Circularly	polarized	Alfvén	waves	on	[0,1]3,	

CPU time saving: for 2nd and 4th order to achieve the same accuracy, N2 and N4 are related by

                                                   à   in terms of CPU time   à 

C4/C2 ∼ {5,8.7}, "4/"2 ∼ {4.3, 3.7}   à   

[*] Berta et al., JCP., 499, 112701 (2024); [**] Mignone et al, MNRAS (accepted)

# = k’⋅x’-$t



Application	to	Relativistic	Reconnection:	Ideal	Tearing	Mode
• Ideal	tearing	mode	in	ResRMHD,	with	FF	equilibrium

• For	sufficiently	thin	CS,																											à	 the	
reconnection	process	occurs	on	the	ideal	Alfvénic	
time	scale:	

• In	the	limit	of	large	S	à	ideal	tearing	instability	[*],[**]

• Linear	growth	converges	faster	for		4th	order	scheme	
				à	N4	⪍	N2/2

[*] Pucci & Velli, ApJ 780, L19 (2014); [**] Del Zanna et al,  MNRAS, 460, 3753(2016)



Collisionless	Effective	Resistivity



Collisionless	Resistivity:	2D	PIC	Models

• Selvi	et	al.1	(2023)	analyzed	2D	current	sheets	with	PIC	simulations	of	pair	plasmas;

• At	X-points,	diverging	flows	result	in	a	nondiagonal	thermal	pressure	tensor:	finite	
residence	time	for	particles	gives	rise	to	a	localized	collisionless	effective	resistivity.	

[*] Selvi et al, ApJ (2023) 950



Effective	Resistivity	from	PIC	2D	Models

à	Statistical	analysis	of	Ohm’s	law	to	identify	nonideal	electric	field	contributions.	Each	
species	s=e,p	(e.g.	electron/positron)	contributes:

• Dominant	contribution	given	by	non-gyrotropic	thermal	pressure	term.	

ram pressure tensor



The		Non-Ideal	Electric	Field	at	an	X-point



Effective	Resistivity	in	Fluid	Model

• ez	=	+(E	+	vⅹB)z	is	the	rest-frame	electric	
field.

• Nonuniform	nature	of	the	effective	
resistivity	may	give	a	1st	approximation	to	
collisionless	reconnection	in	a	(fluid)	
MHD	description;

• No	“free”	parameters	(as	in	Ripperda	et	
al.,	2019b);

• Dissipation	is	set	by	problem’s	scale	and	
plasma	properties.

• Reformulated	in	terms	of	the	spatial	
current	density	in	the	fluid	frame,

[*] Bugli et al., in prep



Validation: 1D	Self-Similar Current Sheet

• Temporal	evolution	of	a	1D	current	sheet:	comparison	between	effective	and	constant	
resistivity:



2D	Current	Sheet	with	Effective	Resistivity
• 2D	relativistic	MHD	models	with	non-uniform	resistivity	using	both	relativistic	MHD	
(PLUTO code)	and	PIC	(ZELTRON	code).

• Initial	condition:

• Parameters:



2D	Current	Sheet	with	Effective	Resistivity
• 2D	relativistic	MHD	model	with	non-uniform	resistivity.



Effective	Resistivity	Profile



Effective	vs.	Constant	Resistivity



Dependence	on	Grid	Resolution
• Effective	!	prescription	captures	the	onset	of	
magnetic	reconnection	even	at	low	resolutions,	
Nx	≈	256	(models	with	constant	!	require	
generally	much	higher	resolutions	to	converge).

• Reconnecting	magnetic	fluxes	in	agreement	for	
Nx	≳	2048	by	the	end	of	simulation,	with	the	
highest	resolution	case	showing	a	slightly	faster	
and	more	continuous	reconnection.



gPLUTO:	the	next	GPU	Version	of	the	PLUTO		Code

• 4th	order	method	successfully	implemented	in	gPLUTO	–	the	upcoming	
GPU	version	of	the	PLUTO	code,	developed	within	the	SPACE	CoE.

• SPACE	(Scalable	Parallel	Astrophysical	Codes	for	Exascale):	Center	of	
Excellence	funded	by	the	European	HPC	Joint	Undertaking	(JU).

• The	CoE’s	primary	objective	is	to	prepare	7	of	the	existing	state-of-
the-art	European	HPC	astrophysics	and	cosmology	codes	for	the	

transition	to	exa-scale	on		Euro	HPC	facilities.

• SPACE	involves	co-design	activities	bringing	together	scientists,	code	
developers,	HPC	experts,	HW	manufacturers	and	SW	developers.



Conclusions
• 4th	order	schemes	deliver	smaller	dissipation,	higher	accuracy,	CPU	saving	and	more	
efficient	computations;

• Non-uniform,	effective	resistivity	model	provides	a	viable	opportunity	to	design	physically	
grounded	global	models	for	reconnection-powered	high-energy	emission.

• Application	to	2D	reconnection:	good	agreement	between	PIC	and	ResRMHD	models	with	
effective	resistivity:
§ Strong	localization	of	magnetic	dissipation	within	the	current	sheet

§ Dissipation	set	by	the	system’s	dynamics	and	introduction	of	a	characteristic	scale	δ0.

§ Good	results	even	at	modest	resolutions,	while	constant	η	case	calls	for	much	larger	resolutions;
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