

ISSS-15+IPELS-16 Presentation Max Planck Institute, Garching, Germany, Aug. 7, 2024

TURBULENCE AND TRANSPORT FROM MULTIPLE ENTANGLED PLASMA PRESSURE FILAMENTS IN A MAGNETIZED PLASMA

<u>Richard Sydora¹</u>

Thomas Simala-Grant¹, Scott Karbashewski^{1,4}, Bart Van Compernolle^{2,3}, Matt Poulos²

¹University of Alberta, Canada ²University of California, Los Angeles, CA ³General Atomics, San Diego, CA ⁴TAE Technologies Inc., Irvine, CA

<u>Acknowledgement</u>: Faculty and Staff, Basic Plasma Science Facility (BaPSF), UCLA: Troy Carter, Walter Gekelman, George Morales Steve Vincena, Shreekrishna Tripathi, Pat Pribyl & Technical staff

Work Supported by NSERC (Canada) and DOE-NSF (USA) via NSF Award AGS-9724366

OUTLINE

- > Introduction to "blob-filament" structures in magnetized plasma environments
- > Overview and results from controlled "seeded" filament experiments
 - Experiment setup using the Large Plasma Device (LAPD) at BaPSF, UCLA
 - Results 1 Filament-Filament interaction wave mode structure and self-organization
 - Results 2 3D gyrokinetic plasma simulations
 - Results 3 (New) Turbulent mixing in a filament lattice

➤ Summary

RD Sydora, S Karbashewski, B Van Compernolle, MJ Poulos, J. Loughran, Jour. Plasma Physics, 85, 905850612 (2019).

- S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, **29**, 112309 (2022).
- RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

FILAMENTARY STRUCTURES IN MAGNETIZED PLASMAS

➤ Motivation for this work partly comes from extensive research in the last two decades on "blobs" or "blob-filament" transport in edge region of toroidal, magnetized plasmas

Blob image – Gas puff imaging (GPI)

NSTX

Further observations of filamentary structures in toroidal plasmas

QUEST Plasma Experiment, Japan

Banerjee et al, 2012

- > Cross-field transport of particles and energy is enhanced through blob-filaments.
- > Blob transport is *intermittent* rather than a purely diffusive process.
- The blob-like structure forms as a result of instabilities, either in the core or the edge region of the toroidal plasma (active research area).

- Cross-field transport of particles and energy is enhanced through blob-filaments.
- > Blob transport is *intermittent* rather than a purely diffusive process.
- The blob-like structure forms as a result of instabilities, either in the core or the edge region of the toroidal plasma (active research area).
- Physical mechanism of radial motion of blob-filaments is quite well understood through action of gradient-B and curvature drifts of charged particles in the blob, which polarize it, leading to radial ExB motion (S. Krasheninnikov, 2001).

$$\begin{array}{ll} \mbox{Gradient drift} & V_B = \frac{m v_{\parallel}^2}{2qB^3} (B \times \nabla B) & \longrightarrow & \mbox{polarization} \\ \mbox{ExB drift} & V_E = \frac{E \times B}{B^2} & \longrightarrow & \mbox{cross-field drift} \end{array}$$

D'Ippolito, Myra, Zweben, PoP, 2011

Main questions addressed in this work:

➢Internal instabilities in coherent blob-filament

structure – <u>the question of lifetime</u>?

What is the *range of interaction* in cases of multiple

blob-filaments in close proximity? Properties of

filament-filament interaction.

EXPERIMENT SETUP

Making "blob-filaments"

A long, narrow temperature filament in an afterglow plasma

W. Gekelman et al., Rev. Sci. Instruments 87, 025105 (2016), A.T. Burke et al, Phys. Plasmas 7 (5), 1397, 2000.

EXPERIMENT SETUP

The experiments take place in the Large Plasma Device (LAPD) at the Basic Plasma Science Facility (BaPSF) at UCLA.

- > Afterglow Plasma Parameters:
 - Helium plasma
 - Background Magnetic Field, $B_0 = 1000 \text{ G}$
 - Density, $n \sim 1 \times 10^{12} \text{ cm}^{-3}$
 - Background electron temperature, $T_e < 5 \text{ eV}$
 - Alfvén Speed, $V_A \sim 10^8 \text{ cm/s}$
 - Ion Sound Speed, $c_s < 10^6$ cm/s
 - Ion Cyclotron Frequency, $\Omega_i \sim 380 \text{ kHz}$

W. Gekelman *et al.*, Rev. Sci. Instruments **87**, 025105 (2016)

EXPERIMENT SETUP

R.D. Sydora, S. Karbashewski, B. Van Compernolle, M.J. Poulos, J. Loughran, Jour. Plasma Phys. (2019)

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) Planes: 1, 2 and 3 filaments

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, 29, 112309 (2022).¹¹

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) Planes: 1, 2 and 3 filaments

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, 29, 112309 (2022).¹²

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, 29, 112309 (2022).¹³

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, 29, 112309 (2022).¹⁴

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, 29, 112309 (2022).¹⁵

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) Planes, Z_1 =256CM: 2-Filament Case

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) Planes, Z_1 =256CM: 2-Filament Case

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD PLANES – TEMPERATURE, DENSITY, POTENTIAL, $Z_1=256$ CM: 2-FILAMENT CASE

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD PLANES – MODE STRUCTURE, $Z_1=256$ CM: 2-FILAMENT CASE

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD I_{SAT} Planes – Mode Structure, Z_1 =256cm: 2-Filament Case

 $\delta I_{\mbox{sat}}$ (norm.)

0.5

0.1

0.05

-0.05

-0.1

-0.5

 y/δ_e

 $\mathbf{2}$

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD δT_E Planes – 3D Gyrokinetic Simulations: 2-Filament Case

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, **29**, 112309 (2022)²³

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) PLANES, $Z_1=256$ CM: 3-FILAMENT CASE

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) Planes, Z_1 =256CM: 3-Filament Case

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

CROSS-FIELD ION SATURATION CURRENT (I_{SAT}) Planes, Z_1 =256CM: 3-Filament Case

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

DRIFT-ALFVEN MODES

S. Karbashewski, R.D. Sydora, B. Van Compernolle, T. Simala-Grant, M.J. Poulos, *Phys. Plasmas*, **29**, 112309 (2022).⁷

CROSS-FIELD δT_E Planes – 3D Gyrokinetic Simulations: 3-Filament Case

RD Sydora, T Simala-Grant, S Karbashewski, F Jimenez, B Van Compernolle, MJ Poulos, *Phys Plasmas*, **31**, 082304 (2024)

SUMMARY

- For sufficiently steep pressure gradients filaments have internal instabilities (drift-Alfven modes) that have extended radial structure which cause filament-filament interactions at distances several times their diameter. Verified through nonlinear gyrokinetic simulations.
- ➢ For magnetized plasma pressure filaments in close proximity, we have characterized the nonlinear drift wave mode structure. Symmetry breaking of the gradients leads to non-symmetric mode structure initially. Azimuthal ExB flows tend to re-organize the pressure gradients to form on the outside of the filament bundle.
- New experiments on the self-organization of multiple filaments arranged in a latticepattern exhibit the evolution to a rotating layered state, currently under study.

WORK IN PROGRESS: FILAMENT LATTICE

(Collaboration with F. Ramirez, P. Diamond, UCSD)

FILAMENT LATTICE

Α

VORTEX LATTICE DYNAMICS

Da

Thank you

Questions?