

Particle Acceleration during 3D Turbulent Magnetic Reconnection:

energy partitioning between thermal & nonthermal plasmas

Masahiro Hoshino Collaborator: Samuel Totorica

Magnetic Reconnection in Heliosphere

- Magnetic reconnection is the most plausible process of rapid magnetic energy dissipation
- Not only hot thermal plasma but also nonthermal particles are observed during reconnection in space such as Earth's magnetosphere, solar flares, etc.

Hot & High-Speed jet

Giovaneli, Nature, 1949, Sweet 1958, Parker 1957, Petschek 1964, Furth, Killeen and Rosenbluth (FKR), 1964,...

Magnetic Reconnection in High Energy Plasma Universe

Nonthermal particle acceleration is extremely efficient for high energy astrophysical objects such as pulsar magnetosphere, astrophysical jets etc.

magnetization parameter

$$\sigma \equiv B^2/(4\pi n(m_i + m_e)c^2)$$

Alfvén speed(V_A)

$$V_A/c = \sqrt{\sigma/(\sigma+1)} \approx 1 \ for \ \sigma > 1$$

PIC simulation reveled the generation of hard energy spectrum in relativistic reconnection with $\sigma{>}1$

Zenitani &MH ApJL 2001; Sironi & Spitkovsky ApJL 2014; Guo+ ApJ 2014; Dahlin+ PoP 2017; ...

Open Questions:

- Relativistic reconnection efficiently generates non-thermal particles, whereas non-relativistic reconnection heats thermal plasma.
- However, the quantitative understanding of the energy partitioning between thermal and nonthermal plasma is poor.
- Efficiency of nonthermal particle acceleration as functions of plasma temperature T/mc² & guide magnetic field B_G

(high Alfven speed \Leftrightarrow high temperature due to $B^2 = 8\pi NT$)

Reconnection in 2D-PIC Simulation

(pair plasma & Harris plasma sheet)

 $T/mc^2 = 10^{-2} \& B_{\rm G} = 0$

model fitting of nonthermal spectrum

1-D kappa distribution
$$(T_{\kappa},\kappa)$$

 $N_{\kappa}(\gamma) \propto \gamma \sqrt{\gamma^2 - 1} \left(1 + \frac{\gamma - 1}{\kappa T_{\kappa}/mc^2}\right)^{-(\kappa+1)}$

- kappa dist. consists of thermal Maxwellian & nonthermal power law part
- \succ If $\kappa \to \infty$, kappa dist. becomes Maxwellian
- non-extensive statistical mechanics gives the theoretical basis for κ-dist. function by Tsallis (1998)

1-D Maxwell distribution
$$(T_M)$$

 $N_M(\gamma) \propto \gamma \sqrt{\gamma^2 - 1} \exp(-\frac{\gamma - 1}{T_M/mc^2})$

this model fitting of (Maxwell + kappa) is very good !!

nonthermal number density and energy density

1-D kappa distribution
$$(T_{\kappa},\kappa)$$

 $N_{\kappa}(\gamma) \propto \gamma \sqrt{\gamma^2 - 1} \left(1 + \frac{\gamma - 1}{\kappa T_{\kappa}/mc^2}\right)^{-(\kappa+1)}$

1-D Maxwell distribution (T_M) $N_M(\gamma) \propto \gamma \sqrt{\gamma^2 - 1} \exp(-\frac{\gamma - 1}{T_M/mc^2})$

efficiency of nonthermal number/energy density

$$\varepsilon \equiv \frac{nonthermal \ portion \ (red)}{Maxwell(green) + kappa \ (blue)}$$

Acceleration efficiency as function of T/mc^2 ($B_G = 0$)

soft spectrum for non-relativistic reconnection
high efficiency of nonthermal acceleration for relativistic reconnection

MH PoP 2022

3D geometry of guide magnetic field reconnection $(B_G \neq 0)$

 $\vec{B}(x,y) = \nabla \times A_z(x,y)\vec{e}_z + B_G(x,y)\vec{e}_z$

Anti-parallel reconnection $(B_G = 0)$

linear growth rate is fast (order of Alfven transit time)

Guide-field reconnection $(B_G \neq 0)$

linear growth rate is slow $\Gamma_{B_G \neq 0} / \Gamma_{B_G = 0} \approx \sqrt{r_g / \lambda} \left(\frac{B_0}{B_G}\right),$ because collisionless/inertia conductivity is high at X-point

Galeev & Zeleny JETP 1977; Drake & Lee PRL 1977; Cpppi+ PRL 1979; Quest & Coroniti JGR 1982; MH JGR 1987;..

Effects of Guide Magnetic Field & Plasma Temperature

MH ApJ 2023

2D vs 3D Reconnection

$$B_G/B_0 = 1 \& T/mc^2 = 1$$

2D reconnection

density (color contour) magnetic field lines (while)

laminar island

3D reconnection

magnetic field lines (green)

patchy reconnection/turbulent

edge of plasma sheet

neutral sheet

3D reconnections w/ & w/o guide field

 $B_{\rm G}/B_{\rm 0} = 0$

$$B_G/B_0 = 1$$

laminar island

MH PoP 2024

patchy reconnection/turbulent

Oblique tearing modes

 \succ $T_{M,3D}$ and $T_{M,2D}$ are almost same as the initial temperature

- > $T_{\kappa,2D}$ in 2D increases with increasing B_G/B_0 , while $T_{\kappa,3D}$ in 3D keeps almost constant
- $\succ \kappa$ index in 2D increases with increasing B_G/B_0 , while κ index in 3D keeps almost constant
- > Both ε_{ene} and ε_{den} decrease with increasing B_G/B_0 for 2D & 3D, but the decrease in 3D is smaller than that in 2D

Ion & Electron Plasmas with $m_i/m_e = 100$ 2D & anti-parallel reconnection

Conclusions

- Energy spectra can be well modeled by Maxwell + kappa distribution function for both 2D & 3D
- Efficiency of nonthermal particle acceleration increases with increasing temperature T for both 2D & 3D
- Efficiency of nonthermal particle acceleration decreases with increasing the guide magnetic field B_G for both 2D & 3D
- 3D guide-field reconnection shows a patchy and turbulent signature, and nonthermal particles acceleration in 3D is more efficient than that in 2D
- > 3D guide-field reconnection maintains a hard energy spectrum with κ ~4
- Ion-electron reconnection (ongoing)