Kinetic Properties of the Reconnection Electron Diffusion Region, Explored Through Theory and Experiment

WiPPL

Jan Egedal,

In collaboration with the WiPPL team,

Including J. Olson, P. Gradney, J. Schroeder, C. Kuchta, M Yu, J. Wallace, and C. B. Forest

UW-Madison.

IPELS, August 5, 2024

- The IDR and EDR are sensitive to collisions
- In the collisionless/kinetic regime electron trapping causes new terms in the Ohm's law to dominate

$$\mathbf{E} + \mathbf{u}_e \times \mathbf{B} = \eta \mathbf{J} + \left(\frac{1}{ne} \nabla \cdot \mathbf{p}_e\right) + \frac{m_e}{e} \mathbf{u}_e \cdot \nabla \mathbf{u}_e$$

- This will be shown in theory, PIC simulations, spacecraft observations and laboratory data
- Conclusions

Sweet-Parker Reconnection

$$Mass: \Rightarrow u_{o}\Delta = V_{o}\delta \qquad (A)$$

Ideal upstream
$$E_2 = u_0 B_0$$

Resistive layer: $E_2 = \eta J_2 = \eta \frac{B_0}{\mu_0 S}$
 $\frac{2}{2t} \simeq 0 \Rightarrow u_0 = \frac{\eta}{S\mu_0}$
B

Pressure balance
along x
$$\frac{2}{3x} \left(p + \frac{B^2}{2\mu_0} \right) = 0$$

 $\Rightarrow P_0 + \frac{B^2}{2\mu_0} = P_{max}$
along y $\frac{2}{3y} \left(\frac{1}{2} p V_y^2 \right) = -\frac{3p}{3y}$
 $\Rightarrow \frac{1}{2} p V_0^2 = P_{max} - P_0$

(A), (B) and (C), 3 eqs. in 5 unknowns
$$U_0, V_0, S, \Delta$$
 and η

$$\left(\frac{S}{\Delta}\right)^2 = \frac{(\eta/\mu_o)}{\Delta \nu_A} \equiv S_o'$$

S = Lundquist # = τ_{η} / τ_A

=> Sweet Parker reconnection (5^k) is much faster than resistive diffusion (So). However, Sweet-Parker reconnection is still too slow to explain space observations.

Two-Fluid Simulation

Out of plane GEM challenge (Hall reconnection) current $\mathbf{E} + \mathbf{v} \times \mathbf{B} = (\mathbf{j} \times \mathbf{B})/ne$ [Birn,... Drake, et al. (2001)] 2 FLUID: ISOTROPIC PRESSURE y/d_i lsotropic pressure 0 0 -2 -8 8 0 x/d Aspect ratio: 1 / 10 \rightarrow v_{in} ~ v_A / 10

Jan Egedal

Two-Fluid Simulation

Out of plane

current

-5

c/ω_{pi}

GEM challenge (Hall reconnection) $\mathbf{E} + \mathbf{v} \times \mathbf{B} = (\mathbf{j} \times \mathbf{B})/\text{ne}$ [Birn,... Drake, et al. (2001)]

Most important within IDF:

The Phase Diagram of Reconneciton

Phase diagram of magnetic reconnection. [Daughton, Roytershteyn & Ji, Daughton 2021]

Kinetic regime defined in [Le+, JPP, 2015]

3 weeks ago

A Few Basic Plasma Physics Results

If magnetized and zero heat-fluxes, [CGL, 1956]

$$p_{\parallel} \propto \frac{n^3}{B^2}, \quad p_{\perp} \propto nB$$

If large heat-fluxes: $p_{\parallel} \sim p_{\perp} = nT$ (Boltzmann)

 $p_{||} - p_{\perp} = B^2/\mu_0$ is the marginal firehose condition.

1D current sheets are in force balance at $p_{||}$ - p_{\perp} = B²/ μ_0 , [SWH Cowley, 1979]

A Harris-like Solution for a 1D Current Layer

On a Plasma Sheath Separating Regions of Oppositely Directed Magnetic Field.

E. G. HARRIS (*) Euratom C.N.E.N. - Frascati (ricevuto il 4 Settembre 1961)

$$egin{aligned} f_i &= \left(rac{M}{2\pi heta}
ight)^{rac{3}{2}} N \, \exp\left[-rac{M}{2 heta}[lpha_1^2+(lpha_2-V_i)^2+lpha_3^2]
ight], \ f_e &= \left(rac{m}{2\pi heta}
ight)^{rac{3}{2}} N \, \exp\left[-rac{m}{2 heta}[lpha_1^2+(lpha_2-V_e)^2+lpha_3^2]
ight], \end{aligned}$$

where V_i and V_e are the mean velocities of ions and electrons respectively.

A Harris-like Solution for a 1D Current Layer

→ Boltzmann Ions and Electron Distributions:

$$n_i(z) = n_0 \exp\left(-\frac{e\Phi(z)}{T_i}\right)$$

$$f_e(z, \mathbf{v}) = f_{e\infty}(U, \mathcal{J}_z), \text{ where } U = \mathcal{E} - e\Phi$$

Self consistent solution through iterations in Matlab:

Similar approach used for ions in magnetotail [Zelenyi+ 2004, 2011]

Electrons Trapped by Φ_{\parallel} , $B_{g}=0.4$

Jan Egedal

4 Regimes of Symmetric Reconnection

Trapped electron dynamics yields $P_{e\parallel} > P_{e\perp}$ B_g/B_{rec} controls 4 regimes of the EDR

log(p /p)

z [d_i] 0.4 -2 2 No meandering Electrons [Oieroset+, GRL, 2016] 0.8 ^[]2 1 0 $P_{e\parallel} > P_{e\parallel}$ in exhaust, no Jets 0 -2 -5 0 5 -5 5 0 x [d_i] x [d_i]

[Le+, 2013, PRL]

B_a/B₀

0

z [d_i]

0.1 [[|]_p] 0

2

-2 2

0

Inflow of Anti-Parallel Reconnection

O WiPPL

The electrons are only magnetized in the inflow regions:

Inflow of Anti-Parallel Reconnection

O WiPPL

The electrons are only magnetized in the inflow regions:

Note: E_{rec} not important to 1D model

0.01

-0.01

EDR includes a 1D current layer, driven by $T_{e||} >> T_{e\perp}$ [Le+ 2009, Egedal+ 2013]

Solution in agreement with VPIC [Egedal, GRL, 2024]

Only inputs: B from ions, ion density, and $f_{e\infty}(v)$. Note: E_{rec} not important to 1D model

How E_{rec} is balance by thermal forces

EDR distributions rotate like a solid body at the rate x/l_u

$$p_{exy} = \frac{x}{l_u} \left(p_{eyy} - p_{exx} \right) \big|_{\text{X-line}}$$

$$\left. -\frac{1}{en} \frac{\partial p_{exy}}{\partial x} = \left. -\frac{1}{enl_u} (p_{eyy} - p_{exx}) \right|_{X-line}$$

$$\left. -\frac{1}{en} \frac{\partial p_{eyz}}{\partial z} = -\frac{1}{enl_u} (p_{eyy} - p_{exx}) \right|_{X-line}$$

At X-line:

$$E_{\rm rec} = -\frac{1}{en} \left(\frac{\partial p_{exy}}{\partial x} + \frac{\partial p_{eyz}}{\partial z} \right) = \mathbf{0}$$

For 1D model with E_{rec}=0, terms must cancel

Off-diagonal stress?

How E_{rec} is balance by thermal forces

Confirmed by matrix of kinetic simulations

Torbert's tail event, MMS 11 July 2017 WIPPL

Torbert's tail event, MMS 11 July 2017 WIPPL

$$E_M + (\partial P_{eLM}/\partial L)/ne = 4 \pm 1 \text{ mV/m}$$

 $(\partial P_{eMN}/\partial N)/ne \simeq -3.6 \pm 0.8 \text{ mV/m}$

MMS confirms:

$$E_{\rm rec} = -\frac{1}{en} \left(\frac{\partial P_{eLM}}{\partial L} + \frac{\partial P_{eMN}}{\partial N} \right)$$
an Egedal [Egedal+, PRL, 2016]

4 Regimes of Symmetric Reconnection

Trapped electron dynamics yields $P_{e\parallel} > P_{e\perp}$ B_g/B_{rec} controls 4 regimes of the EDR

[Le+, 2013, PRL]

Kinetic Regime at Reach in TREX

Kinetic Regime at

For more on TREX, see Paul Gradney's poster

Conclusions

- In the collisionless regime trapping shots down electron heat-fluxes. Convection of flux-tubes into the region of low B yields strong electron anisotropy, $p_{e\parallel} \gg p_{e\perp}$, within the IDR
- Currents driven by $p_{e\parallel} \gg p_{e\perp}$ dominates the structures of the IDR and EDR
- An adiabatic model using $\mathcal{J}_z \propto \oint v_z dz$ accounts for the anisotropic heating and electrons currents across the inflow and EDR of anti-parallel reconnection
- TREX can now access the kinetic regime
- WiPPL is a user-facility, and we are open for your business!

