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Outline

e The IDR and EDR are sensitive to collisions

* In the collisionless/kinetic regime electron trapping
causes new terms in the Ohm’s law to dominate

Pe|| = Pe L

1 M

e This will be shown in theory, PIC simulations,
spacecraft observations and laboratory data

e Conclusions
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Sweet-Parker Reconnection
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Two-Fluid Simulation

GEM challenge (Hall reconnection) Out Oftplane
E +vxB = (] x B)/ne [Bim,... Drake, et al. (2001)] curren
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Two-Fluid Simulation

GEM challenge (Hall reconnection) Out of plane
E +vxB = (] x B)/ne [Bim,... Drake, et al. (2001)] current

1

|sotropic
pressure

-8

The Hall term is associated with quadrupolar
out of plane fields, as observed in the
Magnetic Reconnection Experiment (MRX)
[Ren, PRL, 2005]

Most important within IDF:
i CLEDRE
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The Phase Diagram of Reconneciton

Phase diagram of magnetic

reconnection. [Daughton, Roytershteyn &
Ji, Daughton 2021]

Kinetic regime defined in [Le+, JPP, 2015]
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A Few Basic Plasma Physics Results

If magnetized and zero heat-fluxes, [CGL, 1956]
3
mn
o P| X 5z, PLX nB

If large heat-fluxes: p, ~p, =nT (Boltzmann)

p,, # p, yields current beyond MHD
due to curvature drift:

N

k= (b-V)b JJ_ extra — [(p“ —jJJ_)/B]b X K.

¢+ &

B2/u,

When p,, - p, = B?/y,, then J ., provides all the current
needed to bend the field.

P -PL

P -PL= B2/, is the marginal firehose condition.

1D current sheets are in force balance atp |, - p, = B2/W, , [SWH Cowley, 1979]




A Harris-like Solution for a 1D Current Layer

On a Plasma Sheath Separating Regions

of Oppositely Directed Magnetic Field.
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Fig. 1. The wvariation of B and
n across the sheath.
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[Speiser 1970; Sonnerup
1971; Buchner 1989]

Similar approach used for ions in magnetotail
[Zelenyi+ 2004, 2011]
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A Harris-like Solution for a 1D Current Layer

=» Boltzmann lons and Electron Distributions:

n;(z) = npexp (— T

fe(zav) = fF:OO(Uv jz}ﬂ

ecp(z))

where U = &£ — e®

Self consistent solution through iterations in Matlab:

a)o

k= (b -V)

X

b

Py -PL

Firehose condition
By = \/,uon'O(TeHO —T.10)
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x $v.dz [Speiser 1970; Sonnerup
T o< g v- 1971; Buchner 1989]

Similar approach used for ions in magnetotail
[Zelenyi+ 2004, 2011]




Electrons Trapped by @,

When / where nS
trapping dominates p| X =5, PLX nb
= Zero Heat Flux: B o — [ o
2 CGL-scaling laws 1) = /x -
Trapping potential, 0 - 8 ecD” / Te

Zfd,

[@ieroset, 2001]

wind, 10g ;(¥/(s /km ))

L Drift kinetic model with m,/m_ =» o
20 —
] 5 - fo(Bo), trapped
l - \ | : =47 7 ;
0 l("rﬁi\ 1 fol&).€1) {_{ o€ —e®)), passing.
-40 0 v 5 40
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Trapped electron dynamics yields P, > P,

B,/B, controls 4 regimes of the EDR

-150 -100 -50 Ox/de 50 100 150

Regime

Meandering Electrons [Torbert+, Science, 2018]
Pe~ Pey in exhaust

4

No meandering Electrons [Zhou+, ApJ, 2019]
Pej~ Pe. in exhaust

No meandering Electrons [Wilder+, PRL, 2017]

Pe" > P,, in exhaust, Jets [TRE X]

No meandering Electrons [Oieroset+, GRL, 2016]
Pej> Py in exhaust, no Jets

[Le+, 2013, PRL]
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Inflow of Anti-Parallel Reconnection

The electrons are only magnetized in the inflow regions:

S,

WIiPPL

Le2009-EoS

— P|C simulation
— Eg. State: Hlfpoo |

— E0. State: lepm

<<

Tail-ward

i Earth-ward

© Exhaust

a Le2009 EoS fantastic in
MMS ——= 1 o N inflows, but break in the EDR

Wind, logo(£(s”/km’))

R T, 50 I I T
= [d,] z/d,
3 |_%
30

Drift kinetic model with m/m,_ =» oo Le2009-EoS, (CGL-like)
i - foo(1Bos), trapped 3
5 p 5 — = .
20 f{)( [I'+ J_) {f.x(g _ €(I)||): passing. p|| o n_2 . Pl X nB
[Egedal, et al., 2005, 2007, 2013] B
-40 Y [wsw‘s‘]o [@ieroset, PRL, 2001]
Jan Egedal

12



Inflow of Anti-Parallel Reconnection S

WIiPPL

The electrons are only magnetized in the inflow regions:
[ 1€2003-B0S . |

<= Talwad | Eathward e,
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5 [d,] z/d,
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EDR includes a 1D current layer, driven by T, >> T,
[Le+ 2009, Egedal+ 2013]

Jey driven by

Update previous inflow model:

T.,>>T
_ e| el
fooT:JBs) . trapped
fow-{ P

foo(E —e®(2)) . passing

Now applies to Inflow and EDR

Solution in agreement with VPIC
[Egedal, GRL, 2024]
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EDR includes a 1D current layer, driven by T, >> T,
[Le+ 2009, Egedal+ 2013]

Model f,:

Off-diagonal
stress?

Solution in agreement with VPIC

[Egedal, GRL, 2024]
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How E,.. IS balance by thermal forces

At X-line:
1 /o %)
Eroe = —— ( Pezy 1 peyz) _

en da )z

For 1D model with E,.=0, terms must cancel

Off-diagonal
stress?

EDR distributions rotate like a
solid body at the rate x/I,
€T
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How E,.. IS balance by thermal forces

EDR distributions rotate like a
z S e EF solid body at the rate x/I,
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Confirmed by matrix of kinetic simulations

X —line
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Torbert’s tail event, MMS 11 July 2017 N4

VPIC Reconstruction
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Trapped electron dynamics yields P, > P,

B,/B, controls 4 regimes of the EDR

Iog(pe”/pel)

-150 -100 -50 Ox/de 50 100 150

Meandering Electrons [Torbert+, Science, 2018]
Pe~ Pey in exhaust

No meandering Electrons [Zhou+, ApJ, 2019]
Pej~ Pe. in exhaust

No meandering Electrons [Wilder+, PRL,
Pg > Pey in exhaust, Jets [TREX]

O Tneandering Electrons [Oieroset+, GRL, 2016]
Pey> Py in exhaust, no Jets

[Le+, 2013, PRL]
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Kinetic Regime at Reach in TREX

TREX Configuration Phase diagram of magnetic

reconnection. [Daughton,Roytershteyn &
Ji, Daughton 2021]
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shot # 65219, t = 185.35.

T

Kinetic Regime at

Cylindrical VPIC simulation

R(m)

Z(m)

For more on TREX, see
Paul Gradney’s poster
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08 06 04 02 0 0.2
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Conclusions ©
WIiPPL

In the collisionless regime trapping shots down electron heat-
fluxes. Convection of flux-tubes into the region of low B yields
strong electron anisotropy, r¢| > pe. , within the IDR

Currents driven by p.| > p.. dominates the structures of the
IDR and EDR

An adiabatic model using 7. « ¢ v.dz accounts for the
anisotropic heating and electrons currents across /
the inflow and EDR of anti-parallel reconnection _&£

TREX can now access the kinetic regime

WIPPL is a user-facility,
and we are open for your business!
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