A Multi-Scale Particle-in-Cell Simulation of Plasma Dynamics from Magnetotail Reconnection to the Inner Magnetosphere **SSS**-15, IPELS-16, IPP Garching 08/08/2024

Liutauras Rusaitis¹

Mostafa El-Alaoui¹, Raymond J. Walker², David Schriver³, Nicole Echterling³, and Giovanni Lapenta⁴

- ¹ CCMC, NASA Goddard and CUA
- ² Department of Earth, Planetary and Space Sciences, UCLA
- ³ Department of Physics and Astronomy, UCLA
- ⁴ KU Leuven, University of Leuven and Space Science Institute

COMMUNITY DEUS MEA COORDINATED NASA MODELING CENTER

In collaboration with:

liutauras.rusaitis@nasa.gov

The ring current is a clockwise electric current in the inner magnetosphere

METHOD: Types of Particle-in-Cell Codes

EXPLICIT

• simple

- breaks the link between particles and fields for the duration of one time step
- does not conserve energy

SEMI-IMPLICIT

- does not require non-linear • iteration
- conserves energy exactly
- particle mover has a computational cost

complexity identical to explicit PIC, only the field solver has an increased

ECSim (Lapenta, 2017, 2023)

IMPLICIT

- energy conserved
- particle and field equations have to be solved together, coupled via a nonlinear Newton or Picard iteration

Model Developer

Giovanni Lapenta KU Leuven

METHOD

Maxwellian + Kappa velocity distortions

Global MHD fields as boundary conditions

2 billion electrons and ions

> ECSim (Lapenta, 2017, 2023)

SOLAR WIND $B_z = -8nT$ $V_x = -530 \text{kms}^{-1}$ $n = 6 \text{ cm}^{-3}$

Kinetic physics is well resolved near the reconnection

Cycle 1,000 (0min 01s)

Electron physics is (mostly) resolved

magnetic field

expected gyroradius

ELECTRON MOTION

50

Electron trace starts at 20,000 cycles near the reconnection

Electron Gets Energized to 150 keV

150 100 Electron Energy [keV]

Multiple Dipolarization Fronts near the Reconnections

See Angelopoulos et al. (1992) for description of BBFs

Electron and Ion Bulk Velocities

Particles organize into prominent bulk flows

Cycle 2,000 (0min:01s)

10,000 randomly selected ions ins the tail

8 <mark>00</mark> 0

-20

Particles organize into prominent bulk flows

Cycle 2,000 (0min:01s)

10,000 randomly selected ions ins the tail

olis ins the tail

Example 1. Speiser Ion

Non-adiabatic

Example 2. High-energy Ion

Example 2. High-energy Ion

Non-adiabatic SPEISER ORBIT

+-

Adiabatic FERMI

Turbulent 🤈 E FIELDS

÷

Example 3. Betatron Ion

Energy Flux Increases in Ring Current and BBFs

Cycle 1,000 (0min:00s)

 $^{-10}$

Mostly Enthalpy Flux

Energy Flux in the BBFs is Consistent with Observations

Similar to estimates from the observations (~ 3×10^{11} W, Angelopoulos et al., 1997).

The Ring Current is carried mostly by the ions

What did we learn?

- Electrons and ions get accelerated up to ~100keV in the tail reconnection and reach the inner magnetosphere
- We see a development of a partial ring current
- We have observed a few different acceleration mechanisms
- Energy fluxes in the fast flow channels are consistent with observations

Next Steps

Community Coordinated MODELING CENTER

We plan to investigate:

- Fermi/Betatron Acceleration
- Turbulence
- Electron physics
- Organization into BBFs

Contact info: Liutauras Rusaitis (liutauras.rusaitis@nasa.gov)