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Outline

• Local electron dynamics shapes the global structure of a system. 

• Modeling a plasma: a problem of scales.

• Obtaining self-consistent electron dynamics.


• Research highlights:

• Dust and spacecraft charging.

• The solar wind interaction with the lunar plasma environment, comet 67P, and the planet 

Mercury.


• Numerical models provide a complimentary opportunity to understand a problem from a basic 
physics point of view.
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Introduction

• A plasma can be described in different ways:
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Fluid description Kinetic description

f(x, v, t)
n(x, t) 
v(x, t)

n = ∫ f dv 
v = ∫ f v dv



Introduction

• Self-consistent electron dynamics for a macroscopic system: a problem of scales.
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Fluid

Kinetic

System scales

Hours

Minutes

Seconds

10-3 s

10-4 s

10-5 s

Ion scales

Electron scales

106 km

L = 105 km

ρi ~ di = 103 km

102 km

ρe = 10 km

λe = 100 m

Two-way coupling between the electromagnetic 
fields and the motion of the plasma particles.



Introduction

• Self-consistent electron dynamics for a macroscopic system: a problem of scales.


‣ Fluid models (ni, ne, vi, ve)
• Computational effort manageable, even at large 

scales.
• Miss the small-scale physics.
• Fudge parameters reduce the predictive value.

‣ Hybrid models (fi, ne, ve)
• Do bit of both.

‣ Kinetic models (fi, fe)
• First principles: include all physics, in particular 

what we do not yet understand.
• Surprisingly simple to conceive and implement in 

computers.
• Not economical at large scales.
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Fluid

Kinetic

System scales

Hours

Minutes

Seconds
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Hybrid



Modeling electron dynamics
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• A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer.



Modeling electron dynamics
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• A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer.

Particle-in-cell (PIC) approach

   cΔt < Δx

ωpeΔt < Δx

     Δx < ζλD

Explicit PIC



Modeling electron dynamics
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• A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer.

   cΔt < Δx

ωpeΔt < Δx

     Δx < ζλD

Explicit PIC Semi-implicit PIC

   0.1 < vthe Δt /Δx < 1

Particle-in-cell (PIC) approach



Modeling electron dynamics

7

• A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer.

Test-particle approach

Prescribed 

fields

No self-consistent plasma dynamics…



Modeling electron dynamics
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• Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.

• Divisions are constructed depending on plasma particle and surface segment density.



Modeling electron dynamics
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• Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.

• Short range interactions, use brute force, i.e., Coulomb’s Law. 



Modeling electron dynamics
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• Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.

• Long-range interactions, use multipole expansion [Zimmerman et al. (JGR 2016)]. 



Regolith-plasma interactions

• The lunar horizon glow: naturally lofted electrostatically charged dust, transported by surface electric fields. 
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[Criswell (Springer, 1973); Colwell et al. (Rev. Geophys. 2007)] [Patched Charge Model, Wang et al. (GRL 2016)]

Lofting Criterium: QdE = Fe + Fc > Fg + Fco



Regolith-plasma interactions

• Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the 
properties of the lunar regolith.


• Dust is also mobilized by human activities, representing both a technical and a health hazard.
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Dust covered Harrison Schmitt’s spacesuit 

[NASA] [Patched Charge Model, Wang et al. (GRL 2016)]

Lofting Criterium: QdE = Fe + Fc > Fg + Fco



Irregular-shaped dust
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‣ Mesh refinement to obtain preferred resolution.


‣ Raytracing to obtain grain illumination/shadowing.

[Deca et al. (AGU 2023; URSI AT-RASC 2024)]



Particle mobilization
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Regolith grain configuration 
(shape, arrangement, …)

1. Grain facet charging

2. Force balance 
(Coulomb vs cohesion)

3. Detachment identification 
(Coulomb vs cohesion)

Output: Lofted grain parameters 
(Size, shape, lofted acceleration, grain charge)

YES

NO

Time



Patched Charge Model benchmark
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100μm

Vflow

[Wang et al. (GRL 2016)]

Lofting Criterium: 

QdE = Fe + Fc > Fg + Fco



Patched Charge Model benchmark.

15

100μm

Vflow



Patched Charge Model benchmark.

15

100μm

Vflow

!(101)



Patched Charge Model benchmark.

15

100μm

Vflow



Modeling regolith-plasma interactions

• Needs self-consistent electron dynamics! 

• Objective: Develop a framework of numerical models that couple the microphysics of grain-scaled processes 
with the self-consistent solution of the near-surface plasma environment.
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CPU i

CPU j

CPU k

[q, E, φ] + [ΣFi, f(v)d3v]
Multiple/composite surfaces/topography
3D dust transport

Irregular-shaped dust

3D reduction particle-particle code

MPI parallel

Regolith surface map 3D electrostatic particle-in-cell code

MPI parallel

Library of surfaces



• The Moon has no intrinsic magnetic field, but does possess regions of local magnetization, called             
Lunar Magnetic Anomalies (LMAs).

• Non-dipolar, small-scale, |Bsurface| ~ 0.1nT -> 1000nT.

• Linked with mini-magnetosphere formation.


• All lunar swirls - the peculiar high-albedo markings on the Moon’s surface -                                                 
have been associated with LMAs. The opposite does NOT hold.

Moon - plasma interaction

17
|Bsurface|

Topology Albedo



• The Moon has no intrinsic magnetic field, but does possess regions of local magnetization, called             
Lunar Magnetic Anomalies (LMAs).

• Non-dipolar, small-scale, |Bsurface| ~ 0.1nT -> 1000nT.

• Linked with mini-magnetosphere formation.
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Moon - plasma interaction
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Hic ego sum!



• Mini-magnetosphere formation

Plasma interaction with a dipole
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[Deca et al. (PRL 2014)]

Semi-implicit PIC
+ Open boundaries

+ Magnetic field model

+ Surface interaction model

3210 ρe

!(103)



• The Tsunakawa model.

Solar wind interaction with Reiner Gamma
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Semi-implicit PIC
+ Open boundaries

+ Magnetic field model

+ Surface interaction model

[Tsunakawa et al. (JGR 2015)]

Hic ego sum!

500

5

0.5

0

|B| (nT)

50



• Integrate over the lunar orbit.

The long-term effect of solar wind standoff 
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[Deca et al. (Nat. Comm. Phys. 2018; JGR 2020)]



Predict the presence and shape of the swirl pattern
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[Deca et al. (Nat. Comm. Phys. 2018; JGR 2020)]

The charge separation electric field: 

(a) explains why not all LMAs form a swirl,

(b) predicts the shape of the albedo pattern.



• Current water ice lifetime models do not include the effects of lunar 
magnetic anomalies co-located with permanently shadowed regions.


• Proof of concept for Mare Ingenii:

Water ice in the lunar polar regions
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[Li&Milliken (Sci. Adv. 2017); Hood et al. (GRL 2022);

Li&Garrick-Bethell (GRL 2019); Deca et al. (AGU 2024)]

Solar wind ion bombardment in the polar regions 
may be a dominant loss process rather than a 
supplier of water ice.



• The dynamics resembles that of a four-fluid coupled system.

Solar wind interaction with comets (67P)
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BIMF

vsw

Cometary ions

Econv

Cometary electrons

Cometary ions

Econv

BIMF

vsw

Cometary ions

Cometary electrons

Solar wind protons

Cometary electrons

Solar wind electrons

Solar wind protons

Semi-implicit PIC
+ Open boundaries

+ Cometary plasma injection 

model
[Deca et al. (PRL 2017, 2019)]

Cometary ions

Solar wind protons

Solar wind electrons

Cometary electrons
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!(8·103)



• Disentangle complex electron measurements from Rosetta.

Solar wind interaction with comets (67P)

24 [Deca et al. PRL 2017]



• Disentangle complex electron measurements from Rosetta.

Solar wind interaction with comets (67P)
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[Deca et al. PRL 2017]

As observed by RPC-IES/ALICE/LAP/MIP.

Solar wind electrons

Cometary electrons

Solar wind + Cometary electronsSuprathermal e-,
solar wind origin.

Warm e-,
cometary origin.

IES
Background

Solar wind e-

Cometary e-

Solar wind + Cometary e-

[Broiles et al. JGR 2016] [Madanian et al. JGR 2016]



• Advice non-fully kinetic simulation approaches 
on where reduced plasma models can be 
safely used.


• Example: generalized Ohm’s law computed 
from particle data.

Solar wind interaction with comets (67P)
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[Deca et al. PRL 2019]

!(8·103)



Electron dynamics at Mercury
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• The lack of electron measurements at Mercury left many enigmas. 

MESSENGER/XRS

[Lindsay et al. JGR 2022]



Electron dynamics at Mercury
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[Lavorenti et al. (A&A 2023)]

Semi-implicit PIC
+ Open boundaries

+ Magnetic field model

+ Exosphere model

!(3·104)
• Simulation overview for northward IMF.



Electron dynamics at Mercury
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• Electron precipitation drives the emission of X-rays

[Lavorenti et al. (A&A 2023)]

MESSENGER/XRS

[Lindsay et al. JGR 2022]



Take-aways

• Local electron dynamics shapes the global structure of a system.


• Fully kinetic models can help interpret complex plasma 
measurements from a basic physics point of view.


• “If you have a problem, if no one else can help, and if you can find 
them…                                                                                      
maybe you can try the A (kinetic modeling) Team.”


Thank you for your attention! 

(What happens when you push the red button? - No clue… )
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Simulations are fun,
use them!

Dust - Comets - Lunar magnetic anomalies - Magnetospheres


