Electron Dynamics Throughout The Solar System

Jan Deca Laboratory for Atmospheric & Space Physics University of Colorado Boulder

The 15th International Symposium for Space Simulations (ISSS-15) and the 16th International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS-16). @ Max Planck Institute for Plasma Physics. August 7, 2024.

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

Outline

- Local electron dynamics shapes the global structure of a system.
 - Modeling a plasma: a problem of scales.
 - Obtaining self-consistent electron dynamics.
 - Research highlights:
 - Dust and spacecraft charging.
 - \bullet Mercury.
- physics point of view.

University of Colorado Boulder

The solar wind interaction with the lunar plasma environment, comet 67P, and the planet

• Numerical models provide a complimentary opportunity to understand a problem from a basic

Introduction

A **plasma** can be described in different ways: ullet

Fluid description

University of Colorado Boulder

Kinetic description

Introduction

<u>Self-consistent</u> electron dynamics for a macroscopic system: a problem of scales. Two-way coupling between the electromagnetic

fields and the motion of the plasma particles.

Introduction

- **Self-consistent** electron dynamics for a macroscopic system: a problem of scales.
- Fluid models (n_i, n_e, v_i, v_e)
 - Computational effort manageable, even at large scales.
 - Miss the small-scale physics.
 - Fudge parameters reduce the predictive value.
- Hybrid models (f_i, n_e, v_e)
 - Do bit of both. lacksquare
- **Kinetic models (f**_i, f_e)
 - First principles: include all physics, in particular what we do not yet understand.
 - Surprisingly simple to conceive and implement in computers.
 - Not economical at large scales.

A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer. lacksquare

A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer. \bullet

University of Colorado Boulder

Particle-in-cell (PIC) approach

Explicit PIC

$$\label{eq:cdt} \begin{split} c\Delta t < \Delta x \\ \omega_{pe}\Delta t < \Delta x \\ \Delta x < \zeta\lambda_D \end{split}$$

A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer. \bullet

University of Colorado Boulder

Particle-in-cell (PIC) approach

A Particle-Particle/Particle-Mesh code + appropriate algorithms + a big computer. \bullet

University of Colorado Boulder

Test-particle approach

- Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.
 - Divisions are constructed depending on plasma particle and surface segment density. \bullet

- Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints. \bullet
 - Short range interactions, use brute force, i.e., Coulomb's Law. \bullet

- Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.
 - Long-range interactions, use multipole expansion [Zimmerman et al. (JGR 2016)]. lacksquare

Regolith-plasma interactions

 \bullet

The lunar horizon glow: naturally lofted electrostatically charged dust, transported by surface electric fields.

Regolith-plasma interactions

- properties of the lunar regolith.
- Dust is also mobilized by human activities, representing both a technical and a health hazard. \bullet

Lofting Criterium: $Q_d E = F_e + F_c > F_g + F_{co}$ [Patched Charge Model, Wang et al. (GRL 2016)]

Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the

Dust covered Harrison Schmitt's spacesuit [NASA]

Irregular-shaped dust

Particle mobilization

Patched Charge Model benchmark

Patched Charge Model benchmark.

Patched Charge Model benchmark.

O(10¹)

Patched Charge Model benchmark.

$$2.0e^{-10}$$

Modeling regolith-plasma interactions

- **Needs self-consistent electron dynamics!**
- with the self-consistent solution of the near-surface plasma environment.

University of Colorado Boulder

Objective: Develop a framework of numerical models that couple the microphysics of grain-scaled processes

Moon - plasma interaction

- The Moon has no intrinsic magnetic field, but does possess regions of local magnetization, called \bullet Lunar Magnetic Anomalies (LMAs).
 - Non-dipolar, small-scale, $|\mathbf{B}_{surface}| \sim 0.1 nT \rightarrow 1000 nT$.
 - Linked with mini-magnetosphere formation.
- All **lunar swirls** the peculiar high-albedo markings on the Moon's surface -have been associated with LMAs. The opposite does **NOT** hold.

Moon - plasma interaction

- The Moon has no intrinsic magnetic field, but does possess regions of local magnetization, called \bullet Lunar Magnetic Anomalies (LMAs).
 - Non-dipolar, small-scale, $|\mathbf{B}_{surface}| \sim 0.1 nT \rightarrow 1000 nT$.

Plasma interaction with a dipole

O(10³)

Solar wind interaction with Reiner Gamma

The long-term effect of solar wind standoff

University of Colorado Boulder

[Deca et al. (Nat. Comm. Phys. 2018; JGR 2020)]

Predict the presence and shape of the swirl pattern

Water ice in the lunar polar regions

- Current water ice lifetime models do not include the effects of lunar magnetic anomalies co-located with permanently shadowed regions.
- Proof of concept for Mare Ingenii:

University of Colorado Boulder

Solar wind ion bombardment in the polar regions may be a dominant loss process rather than a supplier of water ice.

[Li&Milliken (Sci. Adv. 2017); Hood et al. (GRL 2022); Li&Garrick-Bethell (GRL 2019); Deca et al. (AGU 2024)]

Solar wind interaction with comets (67P)

Disentangle complex electron measurements from Rosetta.

Solar wind interaction with comets (67P)

- **O(8.103)**
 - Advice non-fully kinetic simulation approaches on where reduced plasma models can be safely used.
 - **Example:** generalized Ohm's law computed from particle data.

$$\mathbf{E} = -(\mathbf{u}_{i} \times \mathbf{B}) + \frac{1}{en}(\mathbf{j} \times \mathbf{B}) - \frac{1}{en}\nabla \cdot \mathbf{\Pi}_{e}$$

Electron dynamics at Mercury

• The lack of electron measurements at Mercury left many enigmas.

University of Colorado Boulder

Local time (hr)

Electron dynamics at Mercury

Simulation overview for northward IMF. \bullet

O(3·10⁴)

Electron dynamics at Mercury

Electron precipitation drives the emission of X-rays \bullet

Take-aways

Local electron dynamics shapes the global structure of a system. \bullet

Dust - Comets - Lunar magnetic anomalies - Magnetospheres

- Fully kinetic models can help interpret complex plasma measurements from a basic physics point of view.
- "If you have a problem, if no one else can help, and if you can find them... maybe you can try the A (kinetic modeling) Team."

Thank you for your attention!

(What happens when you push the red button? - No clue...)

Simulations are fun, use them!

