Jan Deca Laboratory for Atmospheric & Space Physics University of Colorado Boulder

The 15th International Symposium for Space Simulations (ISSS-15) and the 16th International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS-16). @ Max Planck Institute for Plasma Physics. August 7, 2024.

Laboratory for Atmospheric and Space Physics University of Colorado Boulder

Electron Dynamics Throughout The Solar System

Outline

- *• Local electron dynamics shapes the global structure of a system.*
	- Modeling a plasma: a problem of scales.
		- Obtaining self-consistent electron dynamics.
	- Research highlights:
		- Dust and spacecraft charging.
		- Mercury.
- *physics point of view.*

• The solar wind interaction with the lunar plasma environment, comet 67P, and the planet

• Numerical models provide a complimentary opportunity to understand a problem from a basic

Introduction

• ^A**plasma** can be described in different ways:

1

University of Colorado **Boulder**

Fluid description **Kinetic description**

Introduction

• **Self-consistent** electron dynamics for a macroscopic system: **a problem of scales**. Two-way coupling between the electromagnetic

Introduction

- **Self-consistent** electron dynamics for a macroscopic system: **a problem of scales**.
- **‣ Fluid models** (ni, ne, vi, ve)
	- Computational effort manageable, even at large scales.
	- Miss the small-scale physics.
	- Fudge parameters reduce the predictive value.
- **Hybrid models (f_i, n_{e, Ve})**
	- Do bit of both.
- **‣ Kinetic models** (fi, fe)
	- First principles: include all physics, in particular what we do not yet understand.
	- Surprisingly simple to conceive and implement in computers.
	- Not economical at large scales.

University of Colorado **Boulder**

• A Particle-Particle/Particle-Mesh code **+** appropriate algorithms **+** a big computer.

University of Colorado **Boulder**

• A Particle-Particle/Particle-Mesh code **+** appropriate algorithms **+** a big computer.

Particle-in-cell (PIC) approach

$$
\begin{aligned} c\Delta t < \Delta x \\ \omega_{pe}\Delta t < \Delta x \\ \Delta x < \zeta \lambda_D \end{aligned}
$$

Explicit PIC

University of Colorado **Boulder**

• A Particle-Particle/Particle-Mesh code **+** appropriate algorithms **+** a big computer.

Particle-in-cell (PIC) approach

University of Colorado Boulder

• A Particle-Particle/Particle-Mesh code **+** appropriate algorithms **+** a big computer.

Test-particle approach

- Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.
	- Divisions are constructed depending on plasma particle and surface segment density.

- Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.
	- **Short range** interactions, use **brute force**, i.e., Coulomb's Law.

- Barnes-Hut tree algorithm: no fixed grid, so not bound globally by CFL constraints.
	- **Long-range** interactions, use **multipole** expansion [Zimmerman et al. (JGR 2016)].

Regolith-plasma interactions

• **The lunar horizon glow**: naturally lofted electrostatically charged dust, transported by surface electric fields.

Regolith-plasma interactions

• Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the

[NASA] [**Patched Charge Model**, Wang et al. (GRL 2016)] **Lofting Criterium:** $Q_dE = F_e + F_c > F_g + F_{co}$

- properties of the lunar regolith.
- Dust is also mobilized by human activities, representing both a technical and a health hazard.

Dust covered Harrison Schmitt's spacesuit

Irregular-shaped dust

-
-

Particle mobilization

Patched Charge Model benchmark

Patched Charge Model benchmark.

Patched Charge Model benchmark.

 $O(101)$

Patched Charge Model benchmark.

$$
\begin{bmatrix}\n2.0e^{-10} \\
1.0e^{-10} & \stackrel{\text{odd}}{0} \\
-0.0e^{-10} & \stackrel{\text{odd}}{0} \\
-1.0e^{-10} & \stackrel{\text{odd}}{0} \\
-\stackrel{\text{odd}}{0} \\
-\stackrel{\text{odd
$$

Modeling regolith-plasma interactions

- **• Needs self-consistent electron dynamics!**
- with the self-consistent solution of the near-surface plasma environment.

• **Objective:** Develop a framework of numerical models that couple the microphysics of grain-scaled processes

- The Moon has no intrinsic magnetic field, but does possess regions of local magnetization, called **Lunar Magnetic Anomalies** (LMAs).
	- Non-dipolar, small-scale, $|\mathbf{B}_{\text{surface}}| \sim 0.1$ nT -> 1000nT.
	- Linked with mini-magnetosphere formation.
- All **lunar swirls** the peculiar high-albedo markings on the Moon's surface have been associated with LMAs. The opposite does *NOT* hold.

Moon - plasma interaction

- The Moon has no intrinsic magnetic field, but does possess regions of local magnetization, called **Lunar Magnetic Anomalies** (LMAs).
	- Non-dipolar, small-scale, |**B**surface| ~ 0.1nT -> 1000nT.
	- Linked with mini-magnetosphere formation.
-

Moon - plasma interaction

Plasma interaction with a dipole

 $O(10^3)$

Solar wind interaction with Reiner Gamma

The long-term effect of solar wind standoff

University of Colorado Boulder

[Deca et al. (Nat. Comm. Phys. 2018; JGR 2020)]

Predict the presence and shape of the swirl pattern

Water ice in the lunar polar regions

- Current water ice lifetime models do not include the effects of lunar magnetic anomalies co-located with permanently shadowed regions.
- Proof of concept for Mare Ingenii:

University of Colorado Boulder

[Li&Milliken (Sci. Adv. 2017); Hood et al. (GRL 2022); Li&Garrick-Bethell (GRL 2019); Deca et al. (AGU 2024)]

Solar wind ion bombardment in the polar regions may be a dominant loss process rather than a supplier of water ice.

• Disentangle complex electron measurements from Rosetta.

University of Colorado **Boulder**

Solar wind interaction with comets (67P)

24 [Deca et al. PRL 2017]

- $O(8.103)$
	- Advice non-fully kinetic simulation approaches on where reduced plasma models can be safely used.
	- **Example**: generalized Ohm's law computed from particle data.

$$
\mathbf{E} = -(\mathbf{u}_i \times \mathbf{B}) + \frac{1}{en} (\mathbf{j} \times \mathbf{B}) - \frac{1}{en} \nabla \cdot \mathbf{\Pi}_e
$$

Solar wind interaction with comets (67P)

Electron dynamics at Mercury

University of Colorado **Boulder**

Local time (hr)

• The lack of electron measurements at Mercury left many enigmas.

Electron dynamics at Mercury

 $O(3.104)$

University of Colorado **Boulder**

Particle mover

• Simulation overview for northward IMF.

Electron dynamics at Mercury

University of Colorado **Boulder**

• Electron precipitation drives the emission of X-rays

Take-aways

• Local electron dynamics shapes the global structure of a system.

- Fully kinetic models can help interpret complex plasma measurements from a basic physics point of view.
- "If you have a problem, if no one else can help, and if you can find them… maybe you can try the **A** (kinetic modeling) **Team**."

Thank you for your attention!

(What happens when you push the red button? - No clue…)

Simulations are fun, use them!

University of Colorado **Boulder**

Dust - Comets - Lunar magnetic anomalies - Magnetospheres