

Self-modulation of relativistic cosmic rays penetrating dense molecular clouds

Alexei Ivlev

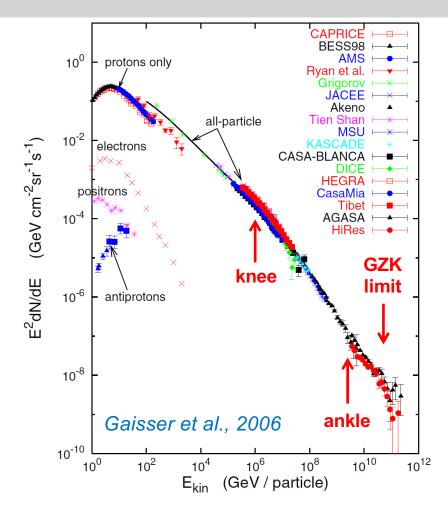
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Dmitry Chernyshov, Alexander Kiselev

P. N. Lebedev Institute of Physics, Moscow, Russia

Chernyshov, Ivlev, & Kiselev, PRD 110, 043012 (2024)

Galactic cosmic rays (CRs)



Energy density in the ISM:

 $W_{\rm CR} \approx 1.4 \text{ eV/cm}^3$ $W_B \approx 0.9 \text{ eV/cm}^3$ $W_T \approx 0.5 \text{ eV/cm}^3$ $W_{\rm turb} \approx 0.2 \text{ eV/cm}^3$

Cosmic Rays are:

dilute, non-thermal, high-pressure relativistic gas

Variety of processes driven by CRs in MCs

• Gas ionization

⇒ coupling to magnetic field, properties of turbulence, ...

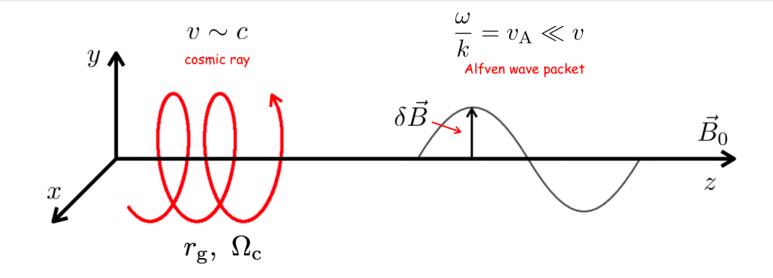
- Gas heating
 - ⇒ cloud dynamics, chemistry, ...
- Dust evolution

 \Rightarrow dust coagulation, chemical processes on grain surface, ...

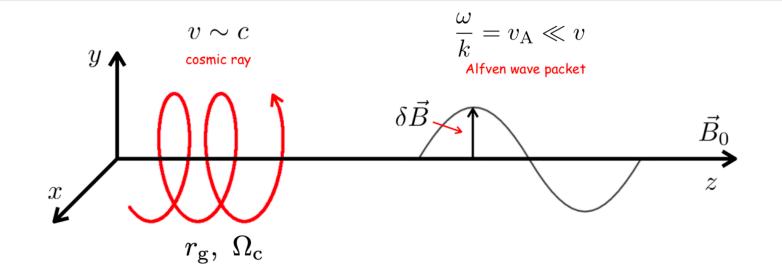
• Processing of icy mantles

⇒ abundances of complex molecules, desorption of ices, ...

Pitch-angle resonant scattering



Pitch-angle resonant scattering



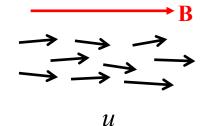
Resonance condition: $|\omega - kv_{\parallel}| \sim \Omega_{\rm c} \sim c/r_{\rm g} \quad \Rightarrow \quad kr_{\rm g} \sim 1$

$$\langle F_z \rangle = \frac{e}{c} \langle v_{\varphi} B_y \rangle \neq 0$$
 kinetic \Rightarrow

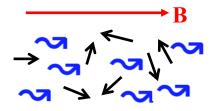
kinetic energy is conserved ⇒ pitch-angle variation

Resonant wave excitation

Interstellar CRs stream freely in quiescent ionized gas



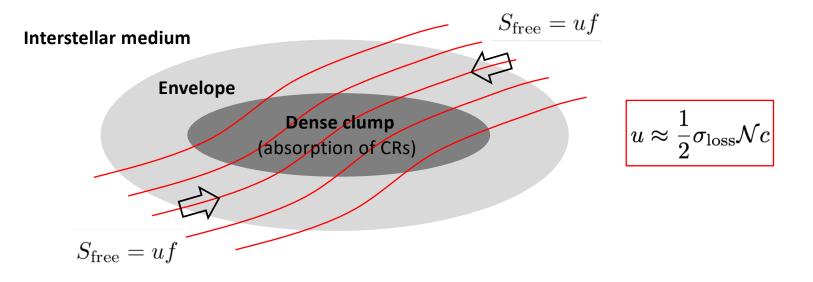
Excited MHD waves lead to CR isotropization (in *co-moving* reference frame)



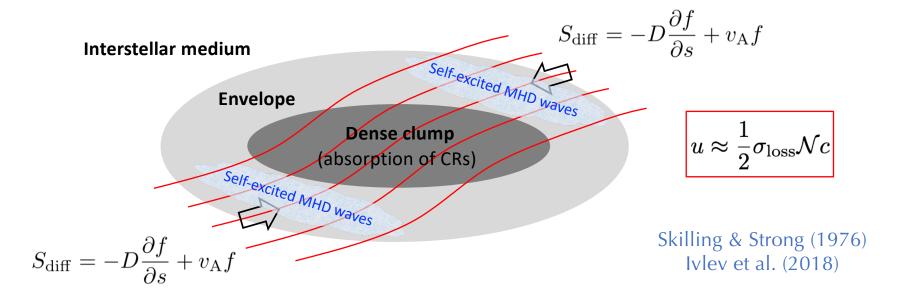
$$\gamma_{\rm CR}(p) \simeq -\pi^2 \frac{e^2 v_{\rm A}}{m_p c^2 \Omega_p} p f(p) (u - v_{\rm A})$$

Kulsrud & Pearce (1969); Skilling (1975)

Resonant streaming instability

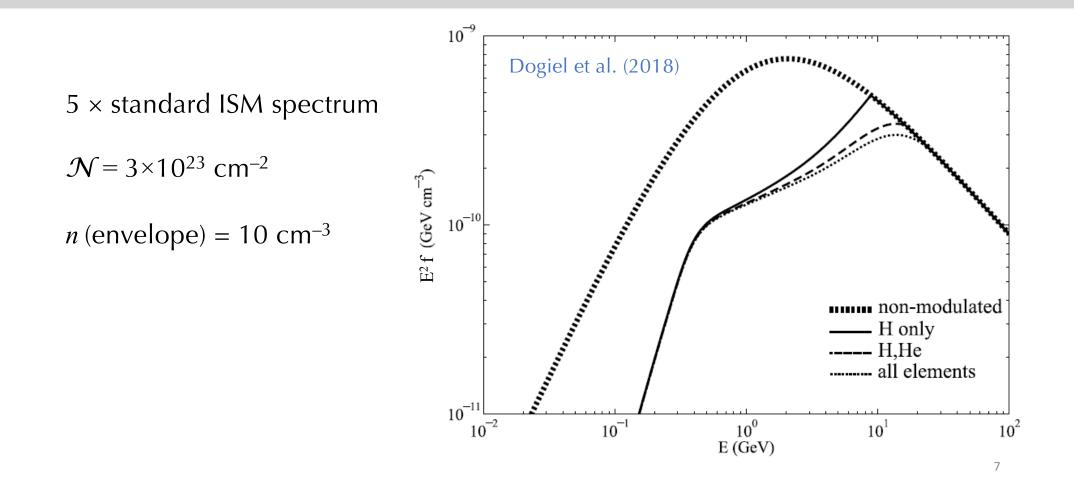


Resonant streaming instability

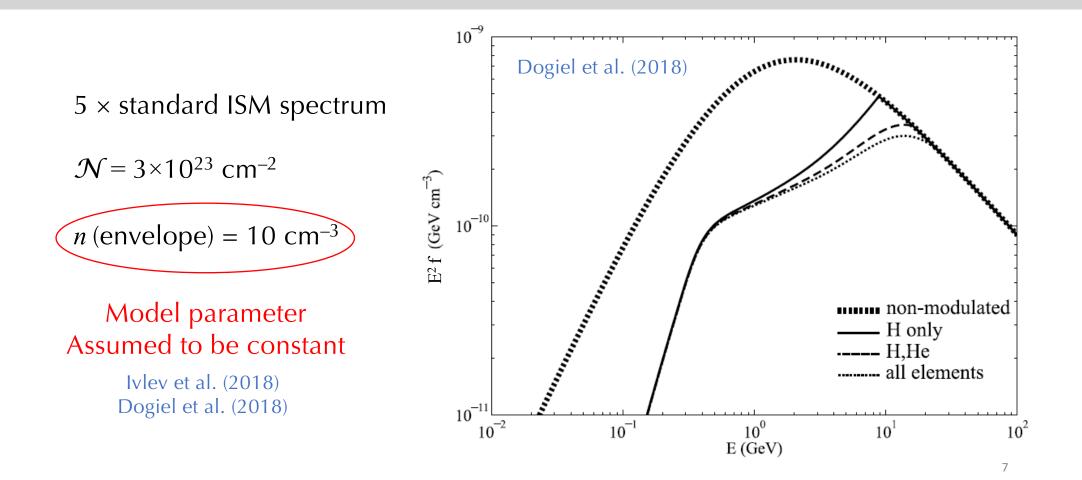


- Streaming CRs with $u > v_A$ resonantly excite MHD waves in the envelope, at $kr_g \sim 1$.
- The turbulence level is set by a balance of the wave excitation, $\gamma_{CR} \propto -D(\partial f/\partial z)$, and the ion-neutral damping, $\nu_{in} \propto n$.

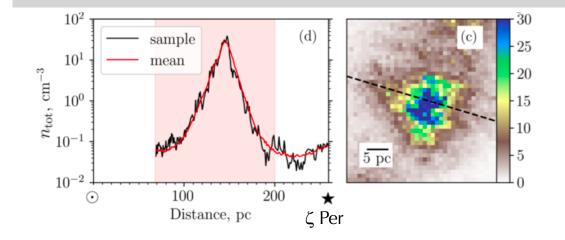
Modulation of CR spectrum in the CMZ



Modulation of CR spectrum in the CMZ

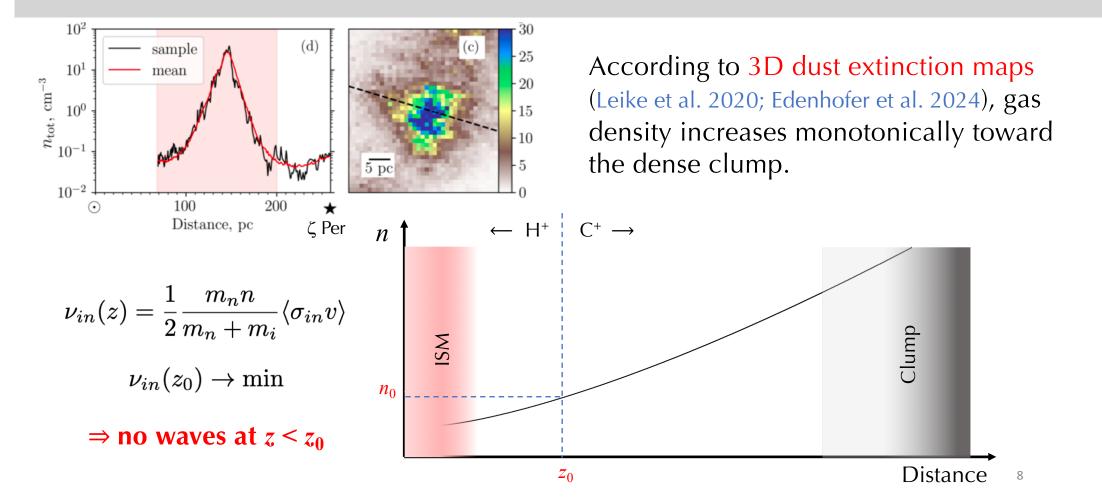


Gas distribution in envelopes

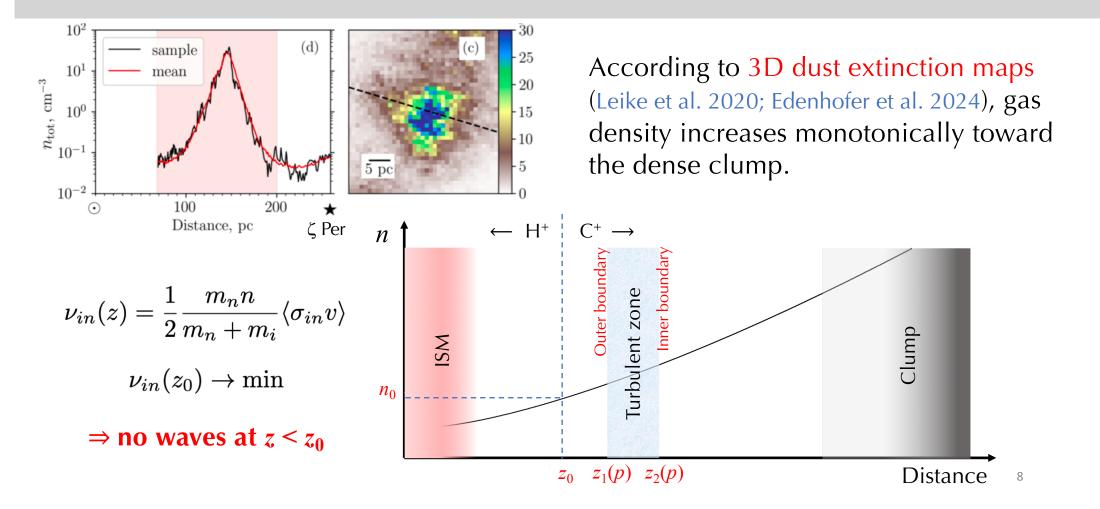


According to 3D dust extinction maps (Leike et al. 2020; Edenhofer et al. 2024), gas density increases monotonically toward the dense clump.

Gas distribution in envelopes



Gas distribution in envelopes



Equations for the diffusion zone (CR protons)

$\frac{\text{Transport equation}}{\frac{\partial}{\partial z} \left(v_{\text{A}} f - D \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial p} \left(\dot{p} f \right) = 0$ $\frac{\partial}{\partial z} \left(\text{total CR flux} \right)$

$$v_{\rm A}(z) = \frac{B}{\sqrt{4\pi m_i \xi_i n}}$$

$$D(p,z) \simeq rac{1}{6\pi^2} rac{vB^2}{k^2W}$$

Skilling (1975) Skilling & Strong (1976) Ivlev et al. (2018)

Excitation-damping balance

 $\gamma_{\rm CR} = \nu_{in}$

$$\gamma_{\mathrm{CR}}(k,z) \simeq -\pi^2 rac{e^2 v_{\mathrm{A}}}{m_p c^2 \Omega_p} p D rac{\partial f}{\partial z}$$

$$u_{in}(z) =
u_0 rac{n}{n_0}$$

Equations for the diffusion zone (CR protons)

Transport equationExcitation-damping balance
$$\frac{\partial}{\partial z} \left(v_A f - D \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial p} (\dot{p}f) = 0$$
 $\gamma_{CR} = \nu_{in}$ total CR flux $\gamma_{CR}(k, z) \simeq -\pi^2 \frac{e^2 v_A}{m_p c^2 \Omega_p} p D \frac{\partial f}{\partial z}$ $v_A(z) = \frac{B}{\sqrt{4\pi m_i \xi_i n}}$ $\gamma_{CR}(k, z) \simeq -\pi^2 \frac{e^2 v_A}{m_p c^2 \Omega_p} p D \frac{\partial f}{\partial z}$ $D(p, z) \simeq \frac{1}{6\pi^2} \frac{vB^2}{k^2 W}$ Skilling (1975)
Skilling & Strong (1976)
Ivlev et al. (2018) $U(p, z) = v_A f + S_D$ \swarrow total CR flux \leftarrow $D(p, z) = v_A f + S_D$ \leftarrow total CR flux $D(p, z) \simeq \frac{n^{3/2}}{p}$

9

 \equiv

$$\frac{\partial}{\partial z} \left(v_{\rm A} f - D \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial p} \left(\dot{y} f \right) = 0$$

$$v_{\rm A}f(p,z) + S_{\rm D} = S_0(p)$$

total CR flux

$$\frac{\partial}{\partial z} \left(v_{\rm A} f - D \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial p} (\dot{y} f) = 0$$

Outer boundary *z*₁(*p*):

$$f(p,z)|_{z=z_1} = f_0(p)$$

$$v_{A}f(p, z) + S_{D} = S_{0}(p)$$

total CR flux
Inner boundary $z_{2}(p)$:
 $u f(p, z)|_{z=z_{2}} = S_{0}(p)$

$$\frac{\partial}{\partial z} \left(v_{\rm A} f - D \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial p} (\dot{y} f) = 0$$

Outer boundary *z*₁(*p*):

$$f(p,z)|_{z=z_1} = f_0(p)$$

$$\frac{df}{dz} = 0 \quad \Longrightarrow \quad 3 S_{\rm D}|_{z=z_{\rm cr}} = v_{\rm A}|_{z=z_{\rm cr}} f_0$$

$$\Rightarrow \qquad n_{\rm cr}(p) = \sqrt{\frac{\pi p f_0(p) n_0}{12\xi_i} \frac{\Omega_i}{\nu_0}}$$
$$n_1(p) = \max\{n_{\rm cr}(p), n_0\}$$

$$v_{A}f(p,z) + S_{D} = S_{0}(p)$$

total CR flux
Inner boundary $z_{2}(p)$:
 $u f(p,z)|_{z=z_{2}} = S_{0}(p)$

10

$$\frac{\partial}{\partial z} \left(v_{\rm A} f - D \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial p} \left(\dot{p} f \right) = 0$$

Outer boundary *z*₁(*p*):

$$f(p,z)|_{z=z_1} = f_0(p)$$

$$\frac{df}{dz} = 0 \quad \Longrightarrow \quad 3 \left. S_{\rm D} \right|_{z=z_{\rm cr}} = \left. v_{\rm A} \right|_{z=z_{\rm cr}} f_0$$

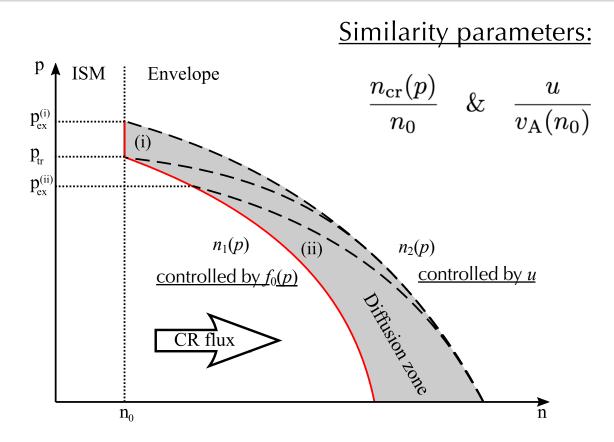
$$\Rightarrow n_{\rm cr}(p) = \sqrt{\frac{\pi p f_0(p) n_0}{12\xi_i} \frac{\Omega_i}{\nu_0}}$$
$$n_1(p) = \max\{n_{\rm cr}(p), n_0\}$$

$$v_{A}f(p,z) + S_{D} = S_{0}(p)$$

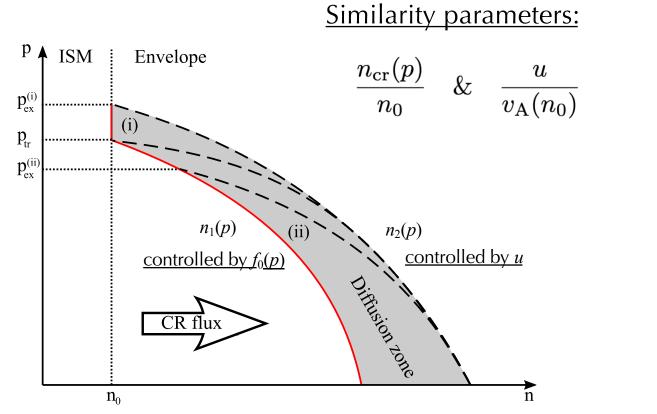
total CR flux
Inner boundary $z_{2}(p)$:
 $u f(p,z)|_{z=z_{2}} = S_{0}(p)$
 \downarrow
 $\frac{n_{2}(p)}{n_{1}(p)} = \left[\mathcal{K}\left(1 - \frac{v_{A}(n_{2})}{u}\right)\right]^{2/3}$
 $\mathcal{K}(p) = 3\left(\frac{n_{cr}(p)}{n_{1}(p)}\right)^{2} + 1$

10

Diffusion zone



Diffusion zone



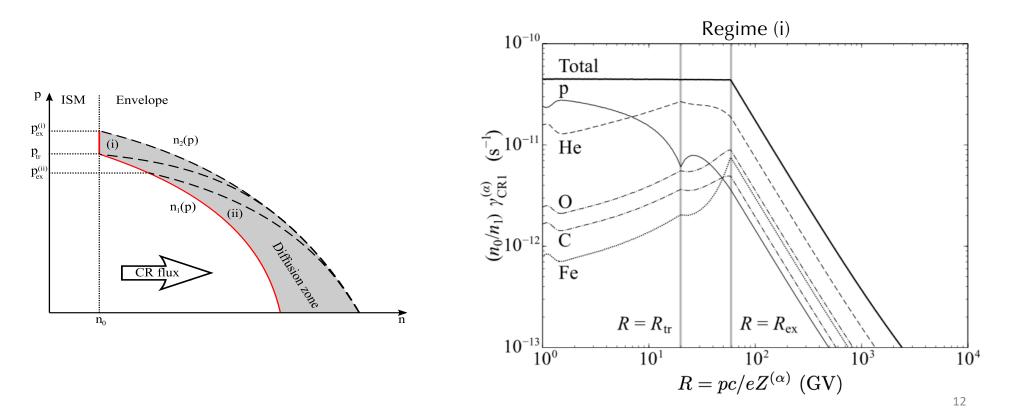
 $\begin{array}{ll} \underline{\text{Excitation threshold } p_{\text{ex}}:} \\ p_{\text{ex}}: & n_2(p_{\text{ex}}) = n_1(p_{\text{ex}}) \\ \\ \underline{\text{Regime (i):}} & v_{\text{A0}} < \frac{3}{4}u \\ \\ \underline{\text{Regime (ii):}} & v_{\text{A0}} > \frac{3}{4}u \end{array}$

Self-consistent diffusion coefficient

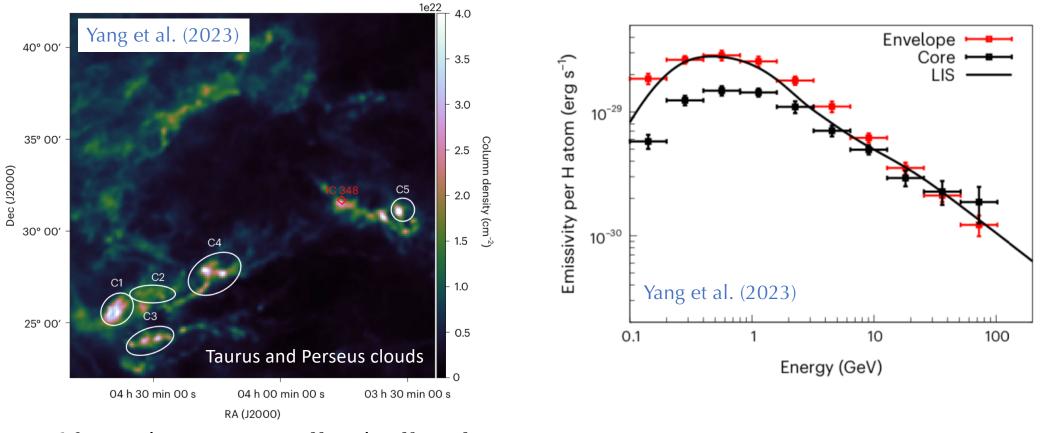
$$\frac{v_{\rm A}}{D} = \frac{1}{2n} \left[4 - \mathcal{K} \left(\frac{n}{n_1} \right)^{-3/2} \right] \frac{dn}{dz}$$

Contribution of heavier CR nuclei

Wave excitation rate at the outer boundary $n_1(p)$:

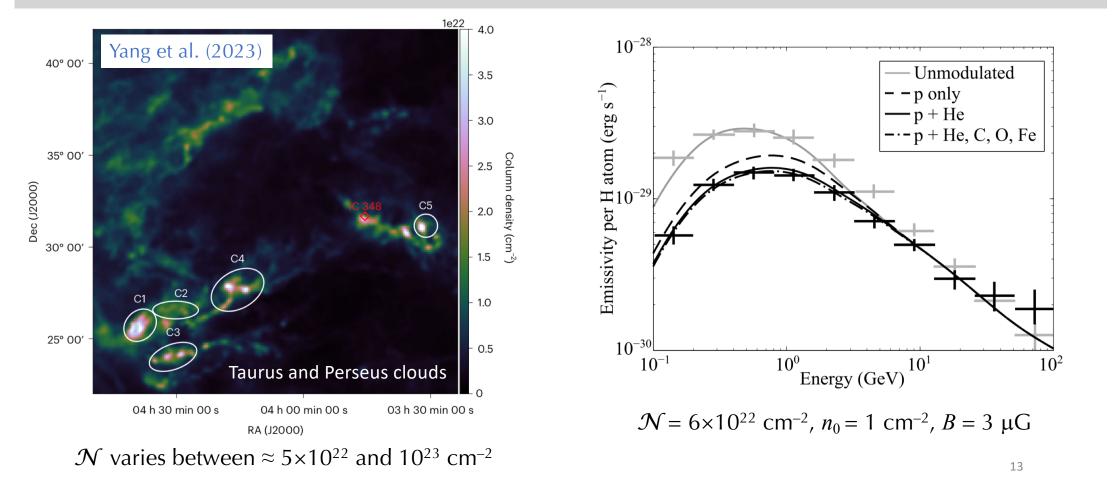


Gamma-ray emission from MCs

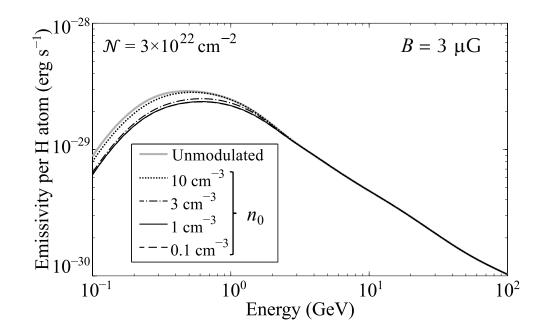


 $\mathcal N$ varies between $\approx 5 \times 10^{22}$ and 10^{23} cm⁻²

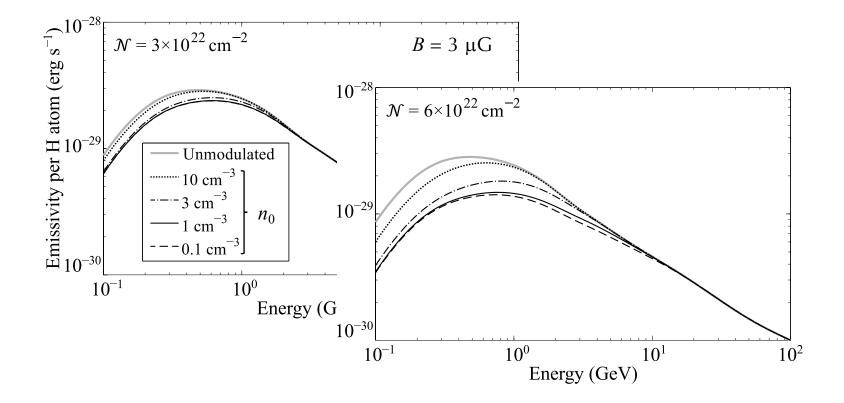
Gamma-ray emission from MCs



Dependence on \mathcal{N} , n_0 , and B

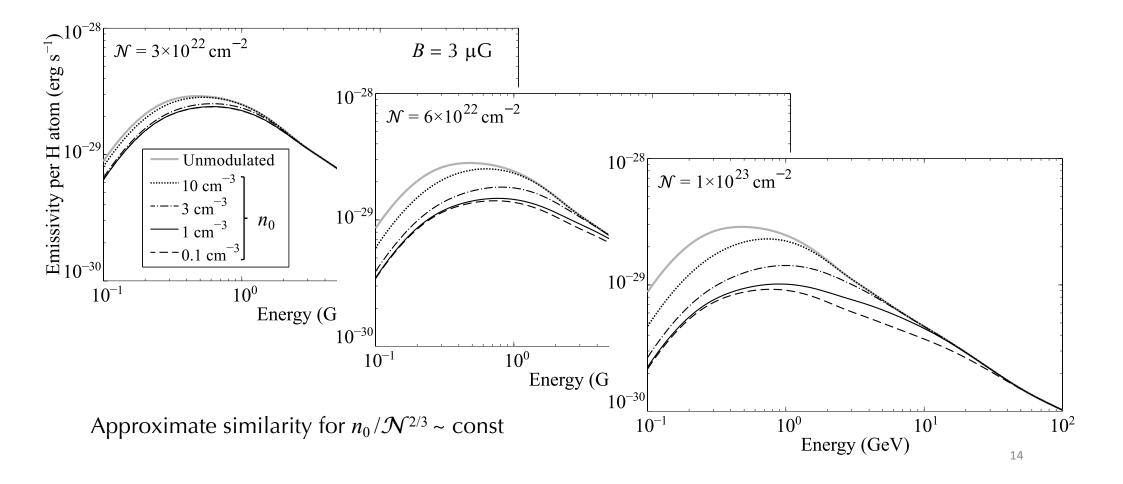


Dependence on \mathcal{N} , n_0 , and B



14

Dependence on \mathcal{N} , n_0 , and B



Conclusions

- Self-modulation of CRs penetrating dense molecular clouds has a universal analytical solution.
- A much stronger modulation effect than obtained earlier (Ivlev et al. 2018, Dogiel et al. 2018).
- Excellent agreement with recent gamma-ray observations of nearby GMCs (Yang et al. 2023) for a conservative set of the parameters.
- The theory can be extended to sub-relativistic CRs \Rightarrow impact on ζ_{H2} .