GPIC: An Advanced Particle-In-Cell Code Using GPU Acceleration and its Application in Magnetic Reconnection

Shiyong Huang

Wuhan University, China

Collaborators: Qiyang Xiong, Zhigang Yuan, Kui Jiang, Jian Zhang, from Wuhan University Bharatkumar Sharma, Lylin Kuang, from NVIDIA

Outline

 \checkmark Introduction of PIC

✓ Development of GPIC

✓ Performance of GPIC

✓ Application in MR

✓ Conclusions

Introduction of Particle-in-Cell Simulation

Introduction of Particle-in-Cell Method

ntroduction	Development	Performance	Application	Conclusion
	troduction	troduction Development	ntroduction Development Performance	troduction Development Performance Application

General Concept of Particle-in-Cell

- A limited spatial area is meshed using certain grid resolution for field;
- Using finite number of macro-particles to represent the certain density plasma in real space;
- The system evolves self-consistent with time following physical laws.

Common Steps For Solver:

- 1. Particles are forced by the local fields;
- 2. Currents/Charges are contributed by the particles;
- 3. Solve the field according to the relation.

Introduction of Particle-in-Cell Method

Introduction of Particle-in-Cell Method

High-Performance Computing of PIC Simulation – MPI (Message Passing Interface)

General Computing of GPU Device – Thread & Block

(a) Mapping of Threads & Blocks to 2D Field Array

- A single GPU device contains numerous "Block", and each Block contains numerous "Thread";
- Each Thread can execute computing instructions independently.

Multiple Thread Dealing With Single Grid

Three-Level Data Exchange Strategy

Composition 2

Composition 3

Each GPU holds the identical field data and different compositions of particle data.

10

Scheme Design of PIC on GPU	Introduction	Development	Performance	Application	Conclusion

Summary of **GPIC** (GPU-PIC) Program

Computing Platform:	NVIDIA HPC SDK
Language:	CUDA Fortran (.f90, .f08)
Compiler:	nvfortran/mpif90
Communication Library:	HPC-X, NCCL(NVIDIA Collective Communication Library)
Math Library:	Thrust, cuRand, cuTensor
Supportive:	All NVIDIA Series GPUs (Capability > 2.5, CUDA Version > 6.0)

Peak Performance of Single GPU Device

CPU Only: Intel Xeon Gold 6248 @ 2.50 GHz | V100: NVIDIA TESLA V100-SXM2-16GB | A100: NVIDIA A100-SXM4-40GB

Acceleration Rate on Multiple GPU Devices

Internal Link: NVLink 600GB/s; External Link: NVIDIA Connect-X 6, Infiniband, EDR, 100GB/s

12

Application in Magnetic Reconnection

Application in Magnetic Reconnection

MMS Spacecrafts Observation [Burch et al., 2016]

Data Resolutions

- FGM: 128 Hz;
- EDP: 8196 Hz;
- FPI: 150 ms for electron; 30 ms for ions.

GPIC Simulation Program [Xiong, Huang, et al., 2023, 2024]

Basic Parameters:

• Harris current sheet (2.5D); $B_x = B_0 \tanh(z/\lambda)$

15

- $m_i/m_e = 100, T_i/T_e = 5, \omega_{pe}/\omega_{ce} = 3.$
- Macro Particle Per Cell: 100

Application in Magnetic Reconnection (I) – Crater Structure behind RF

Application in Magnetic Reconnection (I) – Crater Structure behind RF

Formation of Crater Structure Introduction Development Performance Application Conclusion

Dented Bz

Crater Region

Inner EDR

Outer EDR

Inner EDR

Outer EDR

Electron Trajectory

Evolving Process of Crater Structure in Two-Dimensional Presentation:

- □ At the early stage, the electron outflow velocity is relative low. The B_z only has a little dented trend, and RF has not formed yet;
- At the later stage, the highspeed electron outflow, like hot lava from active volcano eruption, constantly strikes the pileup region and makes B_z collapsed. Then, the crater structure is left behind RF.

Application in Magnetic Reconnection (II) – Turbulent Reconnection Outflow

Appearance of Turbulent Outflow Introduction

ction Development Performance

ormance Application

Conclusion

Status of Turbulent Outflow Under Different Guide Field Level

□ Four runs are performed using different guide field level;

Under larger guide field, reconnection outflow can be more chaotic, and more intense currents are generated.

(Other Simulation Parameters:

Grid: 6000 x 2000 (150 d_i x 50 d_i); *Guide Field:* $B_q = [0, 0.1, 0.5, 1.0]$)

Application in Magnetic Reconnection (II) – Turbulent Reconnection Outflow

Energy Conversion in Turbulent Outflow

Introduction

Development

Performance

Application

Conclusion

Energy Conversion and Magnetic Topology in Turbulent Outflow

□ The turbulent outflow with larger guide field can attain higher PVI and Current, associated with larger energy conversion;

 10^{-1}

1

□ Using the geometrical invariants, it is found that the larger guide field can promote the generation of O-type topology.

Application in Magnetic Reconnection (II) – Turbulent Reconnection Outflow

Energy Conversion in Turbulent Outflow

Introduction

Development

Performance Application

Conclusion

Evidence From MMS Observations (122 Events are Captured.)

- GPU computing can be applied in fully kinetic PIC simulation, and it can amazingly speed up computing process.
- A novel crater structure is found behind reconnection front via GPIC simulations and insitu observations, which is caused by the high-speed electron outflow.
- Both simulations and observations show that Larger guide field can promote the generation of O-type topology structures and energy conversion in turbulent outflow.

References:

[1] S. Y. Huang, Q. Y. Xiong, Z. G. Yuan, et al. (2024), Crater Structure Behind Reconnection Front. *Geophys. Res. Lett.*, 51, e2023GL106581.

[2] S. Y. Huang, J. Zhang, Q. Y. Xiong, Z. G. Yuan, et al. (2023), Kinetic-scale Topological Structures Associated with Energy Dissipation in the Turbulent Reconnection Outflow, *The Astrophysical Journal*, 958, 189, https://doi.org/10.3847/1538-4357/acf847

[3] Q. Y. Xiong, S. Y. Huang, J. Zhang, et al. (2024) Guide Field Dependence of Energy Conversion and Magnetic Topologies in Reconnection Turbulent Outflow. *Geophys. Res. Lett.*, 51, e2024GL109356

[4] Q. Y. Xiong, S. Y. Huang, Z. G. Yuan, et al. (2024) GPIC: A Set of High-Efficiency CUDA Fortran Code Using GPU for Particle-in-cell simulation in space physics. *Computer Phys. Comm.*, 295, 108994.

[5] Q. Y. Xiong, S. Y. Huang, Z. G. Yuan, et al. (2023) A Scheme of Full Kinetic Particle-in-cell Algorithms for GPU Acceleration Using CUDA Fortran Programming. *Astrophys. J. Supp. S.*, 264, 3.

Thank You !

