GPIC: An Advanced Particle-In-Cell Code
Using GPU Acceleration and its Application in
Magnetic Reconnection

- Shiyong Huang
° ° ° \(W g?f;?
Wuhan University, China ™ e
m ™ ':.5?.
(.}i?\ & cﬂf:..‘
Collaborators: Qiyang Xiong, Zhigang Yuan, I N o

Kui Jiang, Jian Zhang, from Wuhan University ® %, ~*&
Bharatkumar Sharma, Lvlin Kuang, from NVIDIA



Outline
v'Introduction of PIC

v'Development of GPIC
v’ Performance of GPIC
v'Application in MR

v'Conclusions




Introduction of Particle-in-Cell
Simulation




Introduction of Particle-in-Cell Method

Fundamental of PIC Simulation Introduction Development Performance Application Conclusion

B A limited spatial area is meshed using certain grid
resolution for field:; 1. Particles are forced by the local fields;

B Using finite number of macro-particles to represent
the certain density plasma in real space;

B The system evolves self-consistent with time following 3.  Solve the field according to the relation.
physical laws.

2. Currents/Charges are contributed by the particles;
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Introduction of Particle-in-Cell Method

Development Performance Application Conclusion

Fundamental of PIC Simulation Introduction

jaz Hy E v
HYJ/E 5 ! "
Mesh Grid: Yee staggered grid. S
-
Solver: Faraday’s law and Ampere’s law in discrete form. W
0B/t = —c(VXE)  QE/dt = (VXB) — 4nJ
” [Yee, 1966] [Boris, 1970; Buneman, 19706]
Solver: Newton-Lorentz law.  dv/dt = q/m(E + vxB) el ABd"ince el 'ﬁﬂ?sniﬁ)" e Pamc"is Aol
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Half Advance of Magnetic Field
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Implement: Buneman-Boris Rotation.
Full Advance of Electric Field

Eny1 — En = At (cV X Bpyayz — 47 ns1/2)
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Solver: Leap-frog Method (Second-order in Time). =—=—— foi=Y 0, atab, s
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Introduction of Particle-in-Cell Method

Traditional HPC PIC Simulation Introduction Development Performance Application Conclusion

Global Stmulation Area

Decomposed Into Several Parts CPU Index: [x, y] [Linear]
Y Direction
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® Field-Decomposition Method:
Each CPU handles the computing [3, 0] [3] [3, 1] [7] [3, 2] [B]
of corresponding subarea.
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Development of PIC Simulation Using GPU Computing

HPC PIC of GPU Computing Introduction Development Performance Application Conclusion

(a) Mapping of Threads & Blocks to 2D Field Array
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B A single GPU device contains numerous “Block”, and

. b) M i f Threads & Blocks to 1D Particle A
each Block contains numerous “Thread”; (b) Mapping of Threads & Blocks to 1D Particle Aray

Lock J Particle Species 2
cuBlocky
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B Each Thread can execute computing instructions .50 P
independently. " cuthreads |
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Development of PIC Simulation Using GPU Computing

Scheme Design of PIC on GPU Introduction Development Performance Application Conclusion
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Development of PIC Simulation Using GPU Computing

Scheme Design of PIC on GPU

(a)
Meshed Field Data Ex, Ey, Ez

Jx, Jy, Jz

\m)\( il lﬁj/jg}mz

(b) Particle Data x, y, z, u, v, w

HE

Composition 0 Composition 1
Composition 2 Composition 3

(c) Data Allocation on Device
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Performance

Iteration Step 1
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Application

Iteration Step 2
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® Field-Duplication Method:

Each GPU holds the identical field data and different compositions

of particle data.
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Development of PIC Simulation Using GPU Computing

Scheme Design of PIC on GPU Introduction Development Performance Application Conclusion

Computing Platform: NVIDIA HPC SDK
Language:  CUDA Fortran (.f90, .fo8)
Compiler: nvfortran/mpif90
Communication Library: HPC-X, NCCL(NVIDIA Collective Communication Library)

Math Library: Thrust, cuRand, cuTensor

Supportive: All NVIDIA Series GPUs (Capability > 2.5, CUDA Version > 6.0)
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Development of PIC Simulation Using GPU Computing

Performance of GPIC Introduction Development Performance Application Conclusion
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Development of PIC Simulation Using GPU Computing

Examples of GPIC Simulations Introduction Development Performance Application Conclusion
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Application in Magnetic
Reconnection




Application in Magnetic Reconnection

Instruments and Methods Introduction Development Performance Application Conclusion

MMS Spacecrafts Observation GPIC Simulation Program
[Burch et al., 2016] [Xiong, Huang, et al., 2023, 2024]
\ e l 4 + .
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Data Resolutions Basic Parameters:
« FGM: 128 Hz; « Harris current sheet (2.5D); B, = Bytanh(z/4)
« EDP: 8196 Hz; * my/m, =100, T;/T, =5, wye/w, = 3.

 FPI: 150 ms for electron; 30 ms for ions.  Macro Particle Per Cell: 100
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Application in Magnetic Reconnection (I) — Crater Structure behind RF

Crater Structure Location Introduction Development Performance Application Conclusion

MMS Observation PIC Simulation

MMS1 _MMS2 _MMS3 _MMS4 . V-MMS1 V»I:AMSZ V-MMS3 __V-MMS4
1 1 1
@ 1 0

O The crater structure locates at the position in- o
between outer EDR (electron diffusion region) :
and RF;

O All four MMS spacecrafts cross the crater
structure successively mainly along N direction.

MMS1 [/
RF Crater ! //I , e

Outer EDR Inner EDR

Magnetic Field Line

1 ! 1 L ! 1
03:55:16 03:55:17 03:55:18 03:55:19 6 7 8 9 10 11 12 13 14

(Other Simulation Parameters: 2017-10.05 UTG Zicto,

Grid: 1600 x 2400 (32d;x48d;); Guide Field: B, = 0 and 1) Simulation results are highly consistent with obser\éations!
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Application in Magnetic Reconnection (I) — Crater Structure behind RF

Formation of Crater Structure Introduction Development Performance Application Conclusion

Evolving Process of Crater Structure in Two-Dimensional Presentation:

() Early Stage

Dented Bz

Inner EDR

Outer EDR

Bz Contour Line

() Later Stage

Crater Region

[—

—BTContour Line
7 8 10 — Electron Trajectory

X [C/wpi]

Inner EDR

Outer EDR

O At the early stage, the

electron outflow velocity is
relative low. The B, only has
a little dented trend, and RF
has not formed yet;

At the later stage, the high-
speed electron outflow, like
hot lava from active volcano
eruption, constantly strikes
the pileup region and makes
B, collapsed. Then, the
crater structure is left behind
RF.
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Application in Magnetic Reconnection (II) —Turbulent Reconnection Outflow

Appearance of Turbulent Outflow Introduction Development Performance Application Conclusion

Status of Turbulent Outflow Under Different Guide Field Level
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Application in Magnetic Reconnection (II) —Turbulent Reconnection Outflow

Energy Conversion in Turbulent Outflow Introduction Development Performance Application Conclusion

Energy Conversion and Magnetic Topology in Turbulent Outflow

—Bg=O.OBO —Bg=0.1 BO —Bg=0.5BO —Bg= 1.OBO

(b) P.D.F. O The turbulent outflow with larger guide field can attain higher
PVI and Current, associated with larger energy conversion;

I 10°

A" DGt 7 O Using the geometrical
invariants, it is found
that the larger guide
field can promote the

generation of O-type
il I topology.

(c) <De|PVI>/<De> (d) <De|J>/<De>
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Application in Magnetic Reconnection (II) —Turbulent Reconnection Outflow

Energy Conversion in Turbulent Outflow Introduction Development Performance Application Conclusion

Evidence From MMS Observations (122 Events are Captured.)
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Summary

Introduction Development Performance Application Conclusion

B GPU computing can be applied in fully kinetic PIC simulation, and it can amazingly
speed up computing process.

B A novel crater structure is found behind reconnection front via GPIC simulations and in-
situ observations, which is caused by the high-speed electron outflow.

B Both simulations and observations show that Larger guide field can promote the
generation of O-type topology structures and energy conversion in turbulent outflow.
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