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Introduction of Particle-in-Cell 
Simulation
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Fundamental of PIC Simulation Introduction Development ApplicationPerformance Conclusion

Introduction of Particle-in-Cell Method

General Concept of Particle-in-Cell Common Steps For Solver:

1. Particles are forced by the local fields;

2. Currents/Charges are contributed by the particles;

3. Solve the field according to the relation.

n A limited spatial area is meshed using certain grid 
resolution for field;

n Using finite number of macro-particles to represent 
the certain density plasma in real space;

n The system evolves self-consistent with time following 
physical laws.
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Fundamental of PIC Simulation Introduction Development ApplicationPerformance Conclusion

Introduction of Particle-in-Cell Method

Explicit Numerical Solver of Collisionless Electromagnetic Scheme

Mesh Grid: Yee staggered grid.

[Yee, 1966]

Field:

Solver: Faraday’s law and Ampere’s law in discrete form.
𝜕𝑩/𝜕𝑡 = −𝑐(∇×𝑬) 𝜕𝑬/𝜕𝑡 = ∇×𝑩 − 4𝜋𝑱

Particle:

Solver: Newton-Lorentz law. 𝜕𝒗/𝜕𝑡 = 𝑞/𝑚(𝑬 + 𝑣×𝑩)

Implement: Buneman-Boris Rotation.

[Boris, 1970; Buneman, 1976]

Overtime:

Solver: Leap-frog Method (Second-order in Time).
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Traditional HPC PIC Simulation Introduction Development ApplicationPerformance Conclusion

Introduction of Particle-in-Cell Method

High-Performance Computing of PIC Simulation – MPI (Message Passing Interface)
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Global Simulation Area
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l Field-Decomposition Method:
Each CPU handles the computing 
of corresponding subarea. 

Supercomputer
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Development of PIC Simulation 
Using GPU Computing
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HPC PIC of GPU Computing Introduction Development ApplicationPerformance Conclusion

Development of PIC Simulation Using GPU Computing

General Computing of GPU Device – Thread & Block

n A single GPU device contains numerous “Block”, and 
each Block contains numerous “Thread”;

n Each Thread can execute computing instructions 
independently.
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Scheme Design of PIC on GPU Introduction Development ApplicationPerformance Conclusion

Development of PIC Simulation Using GPU Computing

Multiple Thread Dealing With Single Grid Three-Level Data Exchange Strategy
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Scheme Design of PIC on GPU Introduction Development ApplicationPerformance Conclusion

Development of PIC Simulation Using GPU Computing

Multi-GPU Computing Pattern

l Field-Duplication Method:
Each GPU holds the identical field data and different compositions 
of particle data. 
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Scheme Design of PIC on GPU Introduction Development ApplicationPerformance Conclusion

Development of PIC Simulation Using GPU Computing

Summary of GPIC (GPU-PIC) Program

Computing Platform: NVIDIA HPC SDK

Language: CUDA Fortran (.f90, .f08)

Math Library: Thrust, cuRand, cuTensor

Communication Library: HPC-X, NCCL(NVIDIA Collective Communication Library)

Compiler: nvfortran/mpif90

Supportive: All NVIDIA Series GPUs (Capability > 2.5, CUDA Version > 6.0)
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Performance of GPIC Introduction Development ApplicationPerformance Conclusion

Development of PIC Simulation Using GPU Computing

Peak Performance of Single GPU Device
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CPU Only V100 A100

CPU Only: Intel Xeon Gold 6248 @ 2.50 GHz | V100: NVIDIA TESLA V100-SXM2-16GB | A100: NVIDIA 
A100-SXM4-40GB

Acceleration Rate on Multiple GPU Devices

Internal Link: NVLink 600GB/s; External Link: NVIDIA Connect-X 6, Infiniband, EDR, 100GB/s

Computing Speed up
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Examples of GPIC Simulations Introduction Development ApplicationPerformance Conclusion

Development of PIC Simulation Using GPU Computing

Magnetic Reconnection, Grid: 9600x3200, PPC: 320

Perpendicular Shock, Grid: 28800x2000, PPC: 160

Plasma Turbulence, Grid: 2400x2400, PPC: 3200
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Application in Magnetic 
Reconnection
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Instruments and Methods Introduction Development ApplicationPerformance Conclusion

Application in Magnetic Reconnection

MMS Spacecrafts Observation
[Burch et al., 2016]

GPIC Simulation Program
[Xiong, Huang, et al., 2023, 2024]

Data Resolutions

• FGM: 128 Hz;
• EDP: 8196 Hz;

• FPI: 150 ms for electron; 30 ms for ions.

Basic Parameters:

• Harris current sheet (2.5D);

• 𝑚!/𝑚" = 100, 𝑇!/𝑇" = 5, 𝜔#"/𝜔$" = 3.

• Macro Particle Per Cell: 100

𝐵% = 𝐵&tanh(𝑧/𝜆)
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Crater Structure Location Introduction Development ApplicationPerformance Conclusion

Application in Magnetic Reconnection (Ⅰ) – Crater Structure behind RF

p The crater structure locates at the position in-
between outer EDR (electron diffusion region)
and RF;

p All four MMS spacecrafts cross the crater
structure successively mainly along N direction.

(Other Simulation Parameters:
Grid: 1600 x 2400 (32𝑑!x48𝑑!); Guide Field: 𝐵" = 0 and 1)
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Formation of Crater Structure Introduction Development ApplicationPerformance Conclusion

Application in Magnetic Reconnection (Ⅰ) – Crater Structure behind RF

Evolving Process of Crater Structure in Two-Dimensional Presentation:

p At the early stage, the
electron outflow velocity is
relative low. The 𝐵! only has
a little dented trend, and RF
has not formed yet;

p At the later stage, the high-
speed electron outflow, like
hot lava from active volcano
eruption, constantly strikes
the pileup region and makes
𝐵! collapsed. Then, the
crater structure is left behind
RF.
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Appearance of Turbulent Outflow Introduction Development ApplicationPerformance Conclusion

Application in Magnetic Reconnection (Ⅱ) –Turbulent Reconnection Outflow

Status of Turbulent Outflow Under Different Guide Field Level

p Four runs are performed using different guide field level;

p Under larger guide field, reconnection outflow can be more
chaotic, and more intense currents are generated.

(Other Simulation Parameters:
Grid: 6000 x 2000 (150𝑑!x 50𝑑!); Guide Field: 𝐵" = [0, 0.1, 0.5, 1.0])
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Energy Conversion in Turbulent Outflow Introduction Development ApplicationPerformance Conclusion

Application in Magnetic Reconnection (Ⅱ) –Turbulent Reconnection Outflow

Energy Conversion and Magnetic Topology in Turbulent Outflow

p The turbulent outflow with larger guide field can attain higher
PVI and Current, associated with larger energy conversion;

p Using the geometrical
invariants, it is found
that the larger guide
field can promote the
generation of O-type
topology.
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Energy Conversion in Turbulent Outflow Introduction Development ApplicationPerformance Conclusion

Application in Magnetic Reconnection (Ⅱ) –Turbulent Reconnection Outflow

Evidence From MMS Observations (122 Events are Captured.)

p Well-consistent with 
the simulation results.
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Introduction Development ApplicationPerformance Conclusion

Summary

nGPU computing can be applied in fully kinetic PIC simulation, and it can amazingly
speed up computing process.

n A novel crater structure is found behind reconnection front via GPIC simulations and in-
situ observations, which is caused by the high-speed electron outflow.

n Both simulations and observations show that Larger guide field can promote the
generation of O-type topology structures and energy conversion in turbulent outflow.
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