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Heat flux in the solar wind

there is an upper bound on the 
electron heat flux that depends 

on the electron beta

2

𝒒𝑒~ න 𝒗 − 𝒗 𝒗 − 𝒗 2𝑓(𝒗) 𝑑3𝒗

𝛽𝑒 = 8𝜋𝑛𝑒𝑇𝑒/𝐵0
2

q0=1.5 neTe(2Te/me)
1/2

𝒗 = න 𝒗𝑓(𝒗) 𝑑3𝑣

Gary+ Phys. Plasmas 1999

𝒒𝑒 = −𝜅 𝛻𝑇𝑒

Spitzer-Hӓrm law

Tong+ ApJ 2019

The collisional Spitzer-Hӓrm 
law is not applicable in the 
solar wind and solar corona 
[e.g., Hollweg 1974; Scudder, 
1992]

The heat flux suppression 
below the collisional values 
was demonstrated by direct 
in-situ measurements in the 
solar wind (Feldman+ JGR 
1975; Scime+ JGR, 1994; 
Gary+ Phys. Plasmas 1999; 
Tong+ ApJ 2019)

One of the possible 
mechanisms of the heat flux 
regulation in the solar wind is 
the wave-particle interaction. 
It was hypothesized that 
whistler waves driven by the 
whistler heat flux instability 
might be responsible for the 
heat flux regulation (Gary+ 
Phys. Plasmas, 1999; ApJ 
2000)



Heat flux regulation in the solar wind

the major argument behind Gary+ hypothesis:
beta dependence of the observed upper bound on the electron heat flux is 

similar to the linear marginal stability threshold of the WHFI
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Whistler waves: R-mode with frequencies

 𝜔𝑐𝑖 ≪ 𝜔 < 𝜔𝑐𝑒



Solar wind electrons 

- three electron populations 
drift along magnetic field lines

- halo and strahl electrons carry 
the major part of the electron 
heat flux that is generally 
directed anti-sunward

 

- core electrons drift sunward 
to keep zero current



Whistler instabilities
electrons = Maxwellian Core + Maxwellian Halo:
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WHFI: Whistler Heat Flux Instability 
Generates only parallel whistler 
waves
Does not reduce the heat flux 
(Kuzichev et al. ApJ 2019)

WTAI: Whistler Temperature 
Anisotropy 
Instability
Generates both parallel and anti-
parallel whistler waves
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Effects of anisotropy on WHFI: linear theory

𝐹𝑒 =
𝑛𝑐

2𝜋𝑣𝑐
2 3/2

exp −
Ԧ𝑣 − 𝑢𝑐

2

2𝑣𝑐
2 +

𝑛ℎ

2𝜋𝑣ℎ
2 3/2𝐴ℎ

exp −
𝑣∥ − 𝑢ℎ

2

2𝑣ℎ
2 −

𝑣⊥
2

2𝑣ℎ
2𝐴ℎ

6

𝐴ℎ =
𝑇ℎ⊥

𝑇ℎ∥
;  𝑣𝑐,ℎ =

𝑇𝑐,ℎ∥

𝑚𝑒



7

< 𝛿𝐵 𝑡 >= < 𝐵⊥
2(𝑡, 𝑥) >𝑥

PIC simulations
𝛽𝑐 = 1, 𝑛𝑐 = 0.85, 𝑢𝑐 = −3𝑣𝐴

𝐴ℎ = 1.3, 𝑣ℎ
2/𝑣𝑐

2= 6



Heat flux variation for 𝐴ℎ = 1.3, 𝛽𝑐 = 1 
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𝛿𝑞𝑒 𝑡 = 𝑞𝑒 𝑡 /𝑞𝑒(𝑡 = 0) − 1

decreasing 𝛾−

decreasing 𝛾−

• Heat flux 
decreases by up 
to 10%

• Heat flux 
variation is 
correlated with 
the linear 
growth rate for 
the anti-parallel 
whistler waves.

• Growth rates 
(and, 
consequently, 
saturated 
amplitudes) of 
the parallel 
whistlers are 
almost the same 
for all of the 
simulations.



What changes the heat flux? 
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• Variation of the phase 
space density (for hot 
electrons) demonstrate 
that the instability 
saturation is consistent 
with the QL theory 
predictions: formation of a 
plateau around the 
resonant velocities (black 
vertical lines)

• Parallel heat flux density 
shows
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that the anti-parallel waves 
increase the heat flux, while 
the parallel waves decrease 
it, with overall effect being a 
heat flux reduction.



Full set of simulations: scalings
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𝑣± ∈ 0.6, 0.9



Full set of simulations: heat flux variation
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Full set of simulations: wave frequencies
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Wave frequencies and 
spectral widths were 
identified via Fourier 
analysis. 

𝜔 =
 𝑃𝑆𝐷 𝜔′ 𝜔′𝑑𝜔′

 𝑃𝑆𝐷 𝜔′ 𝑑𝜔′
Δ𝜔2  =

 𝑃𝑆𝐷 𝜔′ 𝜔′ − 𝜔 2𝑑𝜔′

 𝑃𝑆𝐷 𝜔′ 𝑑𝜔′

Gaussian fitting of the 
signal’s spectrum provided 
similar results in the most 
cases.

Quasi-linear theory 
applicability:

Karpman, SSRv, 1974; Tong et al., ApJ, 2019



Summary
● We modeled generation of whistler waves driven by the combined heat flux 

and anisotropy instability that likely operates in the solar wind.

● We found a positive correlation between linear increment and saturated wave 

amplitude and investigated the corresponding relation for different plasma 

parameters. It has been shown that a simple relation 𝐵𝑤 = 𝐶𝛾𝑙𝑖𝑛
𝜈  exists, with 

𝜈 ∈ 0.6, 0.9  

● Our calculations suggest that whistler waves generated by the combined heat 

flux + anisotropy instability can contribute to the heat flux regulation. 

● Spectral analysis of the generated whistler waves demonstrate that the quasi-

linear theory should be applicable, as the frequency spectrum is sufficiently 

wide.
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Thank you!
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