Gamma spectra of positronium from charge-exchange with magnetically confined positrons

FUR PLASMAPHYSIK

MAX-PLANCK-INSTITUT

J. von der Linden^{*1}, A. Deller¹, S. Nißl¹, H. Saitoh², H. Higaki³, A. Card¹, K. Michishio^{4,} E. V. Stenson¹ ¹Max-Planck-Institut für Plasmaphysik, ²Univeristy of Tokyo, ³University of Hiroshima, ⁴National Institute of Advanced Industrial Science and Technology (AIST)

Motivation: interpreting galactic and solar 511keV lines

Skymaps of 511keV compared to other frequencies

What are the sources of e+ (and their relative contributions)? Do e+ escape their sources? How much do they diffuse across interstellar field? In which media do e+ annihilate and how? figure from Siegert (2023) Astro. Space Sci.

Gamma spectra of solar flares

Life of positron in interstellar media and solar chromosphere

0-100us injection and toroidal expansion

4ms elastic collision time; scattering to magnetic confinement

3γ (<**511 keV**) 2γ (**511 keV**)

Can we relate the ratio of the 2 gamma line and the 3 gamma continuum to the chromospheric media by understanding the contributions of Ps formation direct annihilation, spin-flip, and Ps ionization? figure from Murphy (2007) Space Sci. Rev.

Modified figure from Murphy et al. (2005) Astro.phys. J. Supp.

Diagnose magnetically confined e+ with detector array

Deller, von der Linden et al. (2024) Phys. Rev. E

Array of 21 BGO detectors: counts, energy, timing

<600ms: positronium decay following charge-exchange

Permanent magnet trap: confinement through magnetic mirroring and electrostatic reflection

t [s] E [keV]

600ms: Cooling time through inelastic collisions

Transport due to elastic collisions to the wall

Charge-exchange the charge-exchange threshold, resulting in more annihilation at the wall. depletes hotter e+ $LOR(K_{\parallel,i} = 3.3eV)$ $LOR(K_{\parallel,i} = 5.2eV)$ and e+ at higher r. At higher r the kinetic energy is higher. This results in the valley of losses at t~0.5s. Charge-exchange is cut off. But the remaining 0.2 e+ sill need several -10 -10-5 -10-10-5 -5 *x* [cm] collisions to reach the wall. *x* [cm] *x* [cm]

When the magnet bias is higher the kinetic energy is lower so that more e+ are below

0.0 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6

4 ways to eject for diagnostic purposes

Single-photon counting reveals complex lifetime spectra

$U_{qc} = e\phi + \mu B$

Conclusion

Diagnose magnetically confined e+ with 21-BGO-detector array: dump lifetime, counts, energy, coincidence. Losses dominated by charge-exchange ('annihilation in-flight') and transport to wall.

Future extensions:

1) transport of positrons across field-lines for varying degrees of adiabaticity (gyro-orbits not small compared to B-field scale length) - relevant to diffusion in ISM.

2) effect of oPs-quenching interactions with free electrons and He-ions on peak-to-valley ratios - relevant to annihilation emission from chromosphere.

Acknowledgments: The APEX collaboration receives/has received support from IPP/MPG; the Helmholtz Association Young Investigator Group program; the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme; the Deutsche Forschungsgemeinschaft (DFG); the Helmholtz Postdoc Programme; the Humboldt Foundation; the UC San Diego Foundation; the United States Department of Energy; the Japan Society for the Promotion of Science (JSPS); and the National Institute for Fusion Science (NIFS).