Study of atmospheric ion escape from exoplanet TOI-700 d based on global multi-species MHD simulations

 $\overline{\rm Iomoaki Nishioka^{1^*}}$, K. Seki¹, R. Sakata², K. Yamamoto³, S. Sakai², N. Terada², H. Shinagawa⁴, and A. Nakayama⁵ **[1] Graduate School of Science, University of Tokyo, [2] Graduate School of Science, Tohoku University, [3] Institute for Space-Earth Environmental Research, Nagoya University, [4] Kyushu University, [5] College of Science, Rikkyo University Email: t.nishioka@eps.s.u-tokyo.ac.jp**

Background

- One of the most important factors for habitability is the presence of an atmosphere, which escape away to space through various processes (Figure 1).
- M dwarfs are more X-ray and EUV active than G dwarfs (Figure 2).
- TOI-700 d was discovered by TESS in the HZ around an inactive M dwarf.
- § **The effect of XUV flux on the escape rate from TOI-700 d is still unknown.** $log_{10}(O^{+}$ density) $[cm^{-3}]$

Figure 1. Results of the global MHD simulation for atmospheric escape from exoplanets (Dong+, 2020).

 $XUV = X-ray (0.1-10 nm)$ and EUV (10-100 nm)

Figure 2. XUV radiation from M-dwarf.

- \checkmark From ionosphere to magnetosphere (110 km alt. < r < 10 R_p)
- \checkmark Considering chemical reactions (photoionization, electron impact ionization, charge exchange, ion neutral reactions, dissociative recombination) and collisional process between ion-electron, ion-neutral, and electron-neutral
- \checkmark Triangle unstructured mesh generated from a dodecahedron, 192 nonuniform grids in the radial direction and 1922 uniform grids in the horizontal direction (Δr=6-1200 km)

Methods - Global multi-species MHD model

- Multi-species MHD model, REPPU-Planets (Terada+, 2009; Sakata+, 2020, 2022)
	- \checkmark MHD equations which include the continuity equation, the conservation equation for the momentum and energy density, and additional continuity equations for 11 ion species $(0⁺, 0⁺₂, C0⁺₂, NO⁺, CO⁺, N⁺₂, N⁺, C⁺, He⁺, H⁺, Ar⁺)$

§ Global model

√TOI-700 d can retain its atmosphere under strong intrinsic magnetic field (~1000 nT) or low-XUV environment (≲ **30x current Sun).**

Figure 3. Schematic diagram of models in this study

Methods - Parameter settings

- Simulations are conducted under different conditions for the interplanetary magnetic field (IMF) orientation, the planetary intrinsic magnetic field, and the XUV radiation.
- The XUV flux is set between 1 and 50 times the current Earth (referred to as XUV1, XUV50 and so on hereafter).
- **•** The IMF is assumed to be a Parker spiral of close-in exoplanet (\sim 4°) or Earth (\sim 45°)
- The planetary intrinsic magnetic field is assumed to be a dipole field and strength

of the dipole magnetic field is set to 0 nT or 100 nT or 1,000 nT at the equatorial surface .

Results

- As XUV increases, the ionotail is thicker and the tailward flux is stronger because stronger XUV flux results in an expanded thermosphere-exosphere (Figure 4).
- In the case of $\theta = 4^{\circ}$, the pileup of the magnetic field is smaller because the magnetic field lines and flow are mostly parallel (Figure 5).
- XUV must be smaller than 30 times of Earth to retain atmosphere for a long time

Wavelength [nm]

(> 2Gyr) in unmagnetized cases (blue line in Figure 6).

10

 \circ

The strong intrinsic magnetic field of B_{eq} = 1000 nT suppresses the ion escape.

Conclusions

ü**Small Parker spiral angles suppress the ion escape due to weaker magnetic tension force of the pileup magnetic field.**

Table 1. Simulation Settings

Figure 6. The dependence of escape rate on the XUV flux. The blue line shows the timescale of atmospheric loss is 2 Gyr.

