Properties of the generation and propagation of whistler-mode chorus emissions in the Earth's inner magnetosphere

Yuto Katoh¹ and Yoshiharu Omura²

[1] Graduate School of Science, Tohoku University, Japan [2] RISH, Kyoto University, Japan

ISSS-15 & IPELS-16 Garching, Germany 1-9 August 2024

Outline

- **1.** Introduction
- 2. Electron hybrid code simulation of whistler-mode chorus generation
- 3. Properties of chorus generation process
- 4. Propagation of chorus in the magnetosphere
- 5. Summary

Whistler-mode chorus: nonlinear wave-particle interactions in Geospace

Whistler-mode chorus in the Earth's magnetosphere

Chorus in planetary magnetospheres

Chorus emissions observed by Galileo in the equatorial region of the Jovian inner magnetosphere [*Kurth et al.*, PSS 2001] Typical example of chorus emissions observed by Cassini/RPWS during injection events in Saturn's magnetosphere

[Hospodarsky et al., JGR 2008]

Generation process of whistler-mode chorus

1) Linear growth phase $|f(v_{\parallel}, v_{\perp}, \psi)$, $\partial f/\partial \psi = 0$ $|\omega - kv_{\parallel} = \Omega_e/\gamma$ Excitation of a band of whistler-mode waves through the instability driven by a temperature anisotropy of energetic electrons

--> A finite amplitude coherent wave element emerges from the band of waves

Generation process of whistler-mode chorus

2) Non-linear phase

$$f(v_\parallel,v_\perp,\psi)$$
, $\partial f/\partial \psi$

Resonant electrons are trapped/untrapped by a coherent wave element, resulting in the formation of "resonant current"

Numerical simulation plays crucial roles in understanding nonlinear properties of the chorus generation process

 $\omega - k v_{\parallel} = \Omega_e / \gamma$

[cf., Omura, EPS 2021]

Outline

- **1**. Introduction
- 2. Electron hybrid code simulation of whistler-mode chorus generation
- 3. Properties of chorus generation process
- **4.** Propagation of chorus in the magnetosphere
- 5. Summary

Electron Hybrid code: Basic equations [e.g., Katoh et al., EPS 2005; Katoh and Omura, JGR 2004]

Cold electrons are treated as a fluid Energetic electrons are treated as particles

$$\begin{aligned} \frac{\partial V}{\partial t} &= -(V \cdot \nabla)V + \frac{q}{m}(E + V \times E) \\ \hline \text{Finite-Differd} \\ \frac{d(mv)}{dt} &= q(E + v \times B) \\ \hline \text{Buneman-Boris method} \\ J &= qNV + \sum_{i} qn_i v_i \\ \hline \text{Particle-In-Cell method} \\ \end{aligned}$$

Simulation model & initial settings

- Electron Hybrid code
- 1D, field aligned system
- Loss-cone velocity distribution with a temperature anisotropy
- neglecting electrostatic waves

Energetic electrons are trapped in the magnetosphere: mirror motion along a field line

[Katoh and Omura, JGR 2006]

Simulation/CLUSTER observation results comparison

[Katoh and Omura, EPS 2016]

Frequency [f_{ce}]

Outline

- **1**. Introduction
- 2. Electron hybrid code simulation of whistler-mode chorus generation
- 3. Properties of chorus generation process
 - **4.** Propagation of chorus in the magnetosphere
 - 5. Summary

Case 1: number density of energetic electrons

$$\Gamma_{\perp}/T_{\parallel} = 7.1$$

Simulation results with different velocity distribution function

Case 2: Simulations of the same initial condition of energetic electrons and different background magnetic field

Dayside: magnetospheric G configuration is distorted by solar wind compression

Nightside: magnetic field lines are 9 stretched during a disturbed time

[Tsyganenko, 1989]

Case 2: Simulations of the same initial condition of energetic electrons and different background magnetic field

tion of energetic agnetic field [Katoh and Omura, JGR 2013]

Calculated by Tyganenko 1989 model Midnight meridian plane

2000

Case 2: Simulation results with different magnetic field gradient

Case 2: Simulation results with different magnetic field gradient

Comparison of theories and results (different magnetic field gradient)

Outline

- 1. Introduction
- 2. Electron hybrid code simulation of whistler-mode chorus generation
- 3. Properties of chorus generation process
- 4. Propagation of chorus in the magnetosphere
- 5. Summary

2D simulation of propagation of a rising-tone whistler-mode chorus emission in the magnetosphere

X [RE] [Katoh, EPS 2014]

- Without a density duct, whistler-mode waves deviate from the field line at $\sim 10^{\circ}$
- Density duct guides waves up to 30-40° magnetic latitude

2023-2027 JSPS KAKENHI project [PI: Yuto Katoh, Tohoku Univ]

PCUBE (Probing, Controlling, and Understanding of radiation Belt Environments)

We investigate the rapid loss process of radiation belt electrons by

- (1) developing a radiation belt model fully incorporating nonlinear waveparticle interactions
- (2) measuring the radiation belt loss process by originally developed instruments onboard a CubeSat (to be launched in 2026)
- (3) analyzing spacecraft data measured in terrestrial and Jovian magnetospheres

Summary

- We conducted a series of electron hybrid simulations to study dependencies of the generation process of whistler-mode chorus emissions
- Simulation results revealed that chorus emissions are triggered when the wave amplitude exceeds the threshold amplitude derived from the nonlinear wave growth theory
- In the propagation process of whistler-mode waves in the magnetosphere, duct structure guides waves along a field line
- Future work: radiation belt modeling fully incorporating nonlinear wave-particle interactions