Recent Observations of Waves in Laboratory Reconnection Experiments

Jongsoo Yoo¹, H. Ji^{1,2}, P. Shi¹, J. Ng³, L. Chen⁴, S. Bose¹, M. Yamada¹, N. Ahmadi⁵, L. Gao¹, W. Fox¹

1. Princeton Plasma Physics Laboratory, 2. Princeton University, 3. University of Maryland, Colleague, Park, 4. NASA Goddard Space Flight Center, 5. University of Colorado, Boulder

Work supported by NASA-ECIP

1

Magnetic Reconnection Produces Various Free Energy Sources for Waves and Instabilities

Electron Diffusion Region - Large electron flow velocity (large current density), electron temperature anisotropy Near Separatrix - electron temperature anisotropy, $^{\circ}$ \otimes \otimes electron beam, electron hole, pressure gradient

Waves interact with the plasma to reduce the free energy source

Ion Diffusion Region - Fast ion outflow, ion temperature anisotropy

Role of Waves in Magnetic Reconnection

$$
m_e \left\langle n_e \frac{\partial V_e}{\partial t} \right\rangle - \frac{m_e}{e} \left\langle J_e \right\rangle \cdot \nabla \langle V_e \rangle + e \langle n_e \rangle \langle E \rangle - \langle J_e \rangle \times \langle B \rangle
$$

= -\nabla \cdot \langle P_e \rangle - e \langle \delta n_e \delta E \rangle + \langle \delta J_e \times \delta B \rangle + \frac{m_e}{e} \langle \delta J_e \cdot \nabla \delta V_e \rangle.

- Waves may impact both reconnection and electron dynamics by producing fluctuations in fields and plasma parameters.
- The effects of fluctuations on the reconnection dynamics can be quantified through the last three terms.
	- \circ $\langle \delta n_{\rm e} \, \delta E \rangle$ is the anomalous resistivity (drag) term.
	- Other terms can be classified as anomalous viscosity and Reynold's stress.
- Waves can also affect heating, transport, and relaxation processes in plasma via wave-particle interactions.

NASA's Magnetospheric Multiscale (MMS) Mission

Magnetic Reconnection Experiment (MRX)

Outline

- 1. Anisotropy-driven whistler waves near the low-density side separatrix.
	- a. MMS observations
	- b. Similar observations in MRX
- 2. Lower hybrid drift waves in the electron diffusion region of reconnection with guide field
	- a. MMS observations inside a reconnecting current sheet
	- b. MRX observations inside the electron diffusion region.
- 3. Ion acoustic waves during laser-driven reconnection
	- a. Talk by H. Ji on Monday
- 4. Possible wave projects in Facility for Laboratory Reconnection Experiments (FLARE)

Magnetopause

Overview of MMS Event of Burch et al. 2016

- The dashed line is a suggested path of MMS, based on comparison of measured plasma and field profiles with those from a 2D simulation.
- Whistler waves were observed when MMS stayed near the low-density side separatrix.
- There are many observations of whistler waves.
	- The propagation direction is case by case.

MMS Observation of Anisotropy-driven Whistler

Yoo et al. 2018 and 2019

Physics of Anisotropy-driven Whistler Waves

- Whistlers are generated by electrons at a parallel resonant velocity (V_{res}) :
	- \circ $\omega V_{res} k_{\parallel} = \omega_{ce}$.
	- \circ Cold plasma dispersion: kd_e = [ω/(ω_{ce}cosθ-ω)]0.5.
	- \circ With $\theta = 0$ and k_{||}>0, the cold plasma dispersion gives us:

$$
\circ \qquad V_{res} = -V_{Ae} (1 - \omega/\omega_{ce})^{1.5} (\omega/\omega_{ce})^{-0.5}
$$

$$
\circ \text{ At } \omega = 0.5 \omega_{ce}, \, V_{res} = -0.5 V_{Ae}.
$$

- Under usual conditions in the magnetosphere, the resonance velocity is much larger than V_{th} .
- For a double-Gaussian distribution, T_{\perp} > T_{\parallel} in the tail is the necessary condition for whistler generation [Kennel and Petschek, 1996].

Linear Analysis Agrees with Measurements

Similar Observations of Whistler Waves in MRX

Whistler waves near the low-density side separatrix in MRX.

 \circ f[~] 0.5 f_{ce}.

Similar to space observations, you also see increased activities of LHDI at similar times.

LHDI-driven Mixing may Explain Observed Features

- We have observed:
	- Local density increase by particles coming from the exhaust.
	- Loss of electrons with a high parallel velocity.
	- Enhanced LHDI power.
	- Electrons with a dominant parallel velocity are 'lost' to the exhaust first through the 'mixing' zone by LHDI turbulence.

Brief Overview of Lower Hybrid Drift Waves (LHDW) during Magnetic Reconnection

- Free energy source current perpendicular to **B**, associated with pressure gradients.
- Fast-growing, quasi-electrostatic LHDW (e.g. Davidson et al. 1977) ES-LHDW (low β_e)
	- Propagating perpendicular to **B**.
	- Characterized by large electric field fluctuations.
	- Observed away from the electron diffusion region. (e.g. Carter et al. 2001, Roytershteyn et al. 2012).
	- Associated with lower hybrid drift instability near the low-density side separatrix. (e.g. Yoo et al. 2014, 2017).
- **•** Electromagnetic LHDW EM-LHDW (high β_e)
	- Propagating obliquely to **B**.
	- Characterized by magnetic field fluctuations.
	- Observed in the electron diffusion region. (e.g. Ji et al. 2004, Roytershteyn et al. 2012).
	- Concluded that it does not play an important role in supporting reconnection electric field under typical magnetospheric parameters (Roytershteyn et al. 2012).
- These two waves is the same mode with different characteristics.
	- \circ Wave characteristics depend on $\beta_{\rm e}$ and the relative drift velocity between electrons and ions.

Why Revisit LHDW?

- With a guide field, the ES-LHDW may exist inside the current sheet since the guide field decreases β .
- Recent space observations show that ES-LHDW can impact on electron dynamics in the current sheet (L.-J. Chen et al. 2020 Phys. Rev. Lett., J. Yoo et al. 2020 Geophys. Res. Lett., Graham et al. 2019 and 2022).
	- Non-gyrotropic electron heating and vortical flows
	- Capable of generating anomalous resistivity (momentum transfer) 〈δn e δE rec 〉/ne0

Lower Hybrid Drift Wave in Space

- Observed by MMS at the magnetopause (Ergun et al. 2017, Chen et al. 2017).
- \bullet B_g ~ 0.5B_{rec}.
- The density ratio across the current sheet is about 3.
- Region A (electron diffusion region)
	- fluctuations in **B**.
- Region B (inside the current sheet)
	- o Strong fluctuations in **E** and n_e.
	- \circ kp_e \sim 0.7.
	- Propagating almost perpendicular to **B**.

Yoo, et al. GRL 2020 15

Special Probe has been Constructed for Study of Electron Heating and Momentum Transfer Associated with LHDWs in MRX

A moderate GF ~ 0.7 (#191235) case with ES-LHDW activity

- Correlated density and electric fluctuations inside the electron diffusion region - anomalous resistivity (drag).
- Wave energy is concentrated below f_{LH} .

Local Linear Models have been Developed for Study of LHDWs in the current sheet

- Following Ji et al. 2005,
	- Ion rest frame.
	- No temperature gradient.
	- \circ No k_y local analysis.
	- Kinetic treatment for ions (isotropic Maxwellian).
	- Fluid treatment for electrons.
- The parallel electron velocity component is added.

Yoo et al. 2020 (collsionless), Yoo et al. 2022 (collisional)

Improvements over Previous Models

- \bullet Dispersion for arbitrary angle θ can be obtained.
	- \circ Only θ = 90° in Davidson et al. 1977.
- Electromagnetic effects are included Faraday's equation is used.
	- Poisson's equation was used in Davidson et al. 1977
- The electron inertia term is included.
- All terms associated with the density gradient, self-consistent with the perpendicular drift are included.
- **Electron temperature anisotropy** is allowed.
	- Both zeroth and first orders collisionless model
	- Only first order collisional model
- Independent calculation of the perturbed electron density to include effects from electrostatics.
	- Important for ES-LHDWs
- The electron heat flux, heat generated by collisions, and resistivity are included.
	- Closures by Ji and Joseph 2018 and Ji and Held 2013

Linear Stability Analysis has been done for Discharge #191235 via Collisional Model

- Maximum growth rate, $0.2\omega_{LH}$ at $(k\rho_{e}, \Theta) = (0.63, 90^{\circ}).$
- Frequency with the maximum growth rate $\sim 0.27 f_{LH}$.
	- \circ In the lab frame, the dominant frequency is about 0.5f_{LH}.
	- \circ The difference may be explained by the Doppler shift. $(u_{i} \sim 5 \text{ km/s})$

■
$$
\omega_{LF} = \omega + k \cdot u_i \sim 0.25 \omega_{LH} + 0.63 u_{iz}/\rho_e \sim 0.45 \omega_{LH}
$$

ES-LHDW is Capable of Generating Anomalous Resistivity

- In both space and laboratory observations, ES-LHDW can generate density fluctuations that have positive correlation with fluctuations in the reconnection electric field.
	- Phase difference is typically 30-40 degrees.

Yoo et al. Phys. Rev. Lett. 2024

To Understand the Relation between δn_e and δE_{rec}, the x Component of Electron Momentum Equation is Analyzed

- Ignoring the inertial term, resistivity, and Lorentz force, electrostatic modes have:
	- $ik_{\perp}p_{e1x} + en_{0}E_{1x} = 0.$
	- \circ In the isotropic limit, $p_{e1x} = n_{e1}T_{e0}$, which means:
		- i. $n_{\text{e}1}^{\text{}}/n_{\text{o}}^{\text{}}=[\text{ie}/(\text{k}_{\text{L}}\text{T}_{\text{e}0})]\text{E}_{1x}^{\text{}}$.
- In our formulation for LHDWs, we have four additional terms on RHS
	- Inertial term: [m_e(ω-k_o⋅u_{e0})/(k_⊥T_{e0})]u_{e1x}.
	- Lorentz force term: [ieB₀/(k_⊥T_{e0})]u_{e1y}- [ieu_{e0z}/(k_⊥T_{e0})]B_{1y}.
	- \circ Perturbed temperature: $-T_{\text{e}1}/T_{\text{e}0}$
	- Resistivity term: -iR_{e1}/(k_⊥n₀T_{e0}).

Lorentz Force Terms are the Key for the Anomalous Resistivity by ES-LHDW

- Only Lorentz force terms have a significant real part, which is the key for anomalous resistivity.
- Contributions from the resistivity and inertial terms are negligible.

Anomalous Momentum Transfer and Heating are Estimated via Quasilinear Analysis

• Every first-order physical quantities can be expressed in terms of δE_{rec} . o For example, δn_e= ΑδΕ_{rec} (A is a complex number), $\langle \delta n_e \delta E_{rec} \rangle = 0.5 |A||\delta E_{rec}|^2 cos \varphi$.

Statistical Analysis of Electron Heating

- In both intermediate and high GF cases, there are positive correlations between | δE_{rec} and T_{e} .
	- More electron heating is expected with the same wave amplitude for the high GF case.

Low-β Laser-driven Reconnection Experiments - Ion Acoustic Waves and Electron Acoustic Waves

- Free energy source field aligned current and electron beams
- IAWs require $T_i \ll ZT_e$.

Collective Thomson Scattering: 2ω @ 527 nm 150 J, 60 \times 60 \times 50 μm^3 f/10 reflective

Zhang et al. 2023

Direct Measurement of IAW and EAW during Magnetic Reconnection in a Laboratory Plasma

Large electron flow velocity with respect to ions is needed to reproduce the asymmetric IAW and **two-stream electrons** to reproduce EAW peaks

FLARE is under Infrastructure and Power System Upgrade (93% Completion)

To be operated as a US-DOE collaborative research facility

Reconnection Phase Diagram

Possible FLARE Projects Associated with Waves

- 1. Lower hybrid waves (very plausible)
	- a. Potentially, over 400 measurement points of δ**B** covering the ion diffusion region (IDR) are available with magnetic probe arrays and a new data acquisition system (up to 50 MSPS).
	- b. We can study where lower hybrid waves are generated and propagated.
- 2. Alfvén waves (plausible)
	- a. Magnetic probes covering the MHD scale.
	- b. Capability to achieve a longer discharge time.
		- Covering Kinetic Alfvén waves with high guide field is very plausible.
- 3. Whistler and electron cyclotron waves (need R&D)
	- a. Need special probes and data acquisition systems to cover 0.2–2 GHz.
- 4. Plasma waves (need R&D)
	- a. Plan to develop new electrostatic probes to cover 10 GHz range.

Summary

- Whistler waves near the low-density side separatix indicates the precise location of the electron mixing region.
- LHDWs have been observed in both space and laboratory (MRX).
	- Yoo et al. GRL 2020, Hu et al. RSI 2021, Yoo et al. PRL 2024.
- ES-LHDW is capable of generating anomalous resistivity and electron heating.
	- \circ The Lorentz force term is the key for the positive correlation between $\delta n_{_{\rm e}}$ and $\delta E_{_{\rm rec}}$.
	- Anomalous electron heating exceeds the classical electron heating.
- Ion acoustic waves and electron acoustic waves have been observed in laser-drive magnetic reconnection.
	- Potentially important in certain astrophysical plasmas.
- FLARE will provide good opportunities for studying waves during reconnection.
	- Initial targets lower hybrid waves 2D measurements covering the IDR.
	- Kinitic Alfvén waves, whistler waves, and plasma waves in the future.