Recent Observations of Waves in Laboratory Reconnection Experiments

Jongsoo Yoo¹, H. Ji^{1,2}, P. Shi¹, J. Ng³, L. Chen⁴, S. Bose¹, M. Yamada¹, N. Ahmadi⁵, L. Gao¹, W. Fox¹

1. Princeton Plasma Physics Laboratory, 2. Princeton University, 3. University of Maryland, Colleague, Park, 4. NASA Goddard Space Flight Center, 5. University of Colorado, Boulder

Work supported by NASA-ECIP

Magnetic Reconnection Produces Various Free Energy Sources for Waves and Instabilities

Electron Diffusion Region – Large electron flow velocity (large current density), electron temperature anisotropy Near Separatrix – electron \otimes temperature anisotropy, \otimes \otimes electron beam, electron hole, pressure gradient

Waves interact with the plasma to reduce the free energy source

Ion Diffusion Region – Fast ion outflow, ion temperature anisotropy

Role of Waves in Magnetic Reconnection

$$\begin{split} m_e \left\langle n_e \frac{\partial \boldsymbol{V}_e}{\partial t} \right\rangle &- \frac{m_e}{e} \left\langle \boldsymbol{J}_e \right\rangle \cdot \nabla \langle \boldsymbol{V}_e \rangle + e \langle n_e \rangle \langle \boldsymbol{E} \rangle - \langle \boldsymbol{J}_e \rangle \times \langle \boldsymbol{B} \rangle \\ &= -\nabla \cdot \langle \boldsymbol{P}_e \rangle - e \langle \delta n_e \delta \boldsymbol{E} \rangle + \langle \delta \boldsymbol{J}_e \times \delta \boldsymbol{B} \rangle + \frac{m_e}{e} \left\langle \delta \boldsymbol{J}_e \cdot \nabla \delta \boldsymbol{V}_e \right\rangle. \end{split}$$

- Waves may impact both reconnection and electron dynamics by producing fluctuations in fields and plasma parameters.
- The effects of fluctuations on the reconnection dynamics can be quantified through the last three terms.
 - $\langle \delta n_{\rho} \delta E \rangle$ is the anomalous resistivity (drag) term.
 - Other terms can be classified as anomalous viscosity and Reynold's stress.
- Waves can also affect heating, transport, and relaxation processes in plasma via wave-particle interactions.

NASA's Magnetospheric Multiscale (MMS) Mission

Magnetic Reconnection Experiment (MRX)

Outline

- 1. Anisotropy-driven whistler waves near the low-density side separatrix.
 - a. MMS observations
 - b. Similar observations in MRX
- 2. Lower hybrid drift waves in the electron diffusion region of reconnection with guide field
 - a. MMS observations inside a reconnecting current sheet
 - b. MRX observations inside the electron diffusion region.
- 3. Ion acoustic waves during laser-driven reconnection
 - a. Talk by H. Ji on Monday
- 4. Possible wave projects in Facility for Laboratory Reconnection Experiments (FLARE)

Magnetopause

Overview of MMS Event of Burch *et al.* 2016

- The dashed line is a suggested path of MMS, based on comparison of measured plasma and field profiles with those from a 2D simulation.
- Whistler waves were observed when MMS stayed near the low-density side separatrix.
- There are many observations of whistler waves.
 - \circ $\;$ $\;$ The propagation direction is case by case.

MMS Observation of Anisotropy-driven Whistler

Yoo *et al.* 2018 and 2019

Physics of Anisotropy-driven Whistler Waves

- Whistlers are generated by electrons at a parallel resonant velocity (V_{res}):
 - $\circ \quad \omega V_{res} k_{\parallel} = \omega_{ce}.$
 - \circ Cold plasma dispersion: kd_e = [ω/(ω_{ce}cosθ-ω)]0.5.
 - With $\theta = 0$ and $k_{\parallel} > 0$, the cold plasma dispersion gives us:

•
$$V_{res} = -V_{Ae}(1 - \omega/\omega_{ce})^{1.5}(\omega/\omega_{ce})^{-0.5}$$

• At
$$\omega = 0.5\omega_{ce}$$
, $V_{res} = -0.5V_{Ae}$.

- Under usual conditions in the magnetosphere, the resonance velocity is much larger than v_{the}.
- For a double-Gaussian distribution, $T_{\perp} > T_{\parallel}$ in the tail is the necessary condition for whistler generation [Kennel and Petschek, 1996].

Linear Analysis Agrees with Measurements

Similar Observations of Whistler Waves in MRX

 Whistler waves near the low-density side separatrix in MRX.

 \circ f \sim 0.5 f_{ce}.

 Similar to space observations, you also see increased activities of LHDI at similar times.

LHDI-driven Mixing may Explain Observed Features

- We have observed:
 - Local density increase by particles coming from the exhaust.
 - Loss of electrons with a high parallel velocity.
 - Enhanced LHDI power.
 - Electrons with a dominant parallel velocity are 'lost' to the exhaust first through the 'mixing' zone by LHDI turbulence.

12

Brief Overview of Lower Hybrid Drift Waves (LHDW) during Magnetic Reconnection

- Free energy source current perpendicular to **B**, associated with pressure gradients.
- Fast-growing, quasi-electrostatic LHDW (e.g. Davidson et al. 1977) ES-LHDW (low β_{α})
 - Propagating perpendicular to **B**.
 - Characterized by large electric field fluctuations.
 - Observed away from the electron diffusion region. (e.g. Carter et al. 2001, Roytershteyn et al. 2012).
 - Associated with lower hybrid drift instability near the low-density side separatrix. (e.g. Yoo et al. 2014, 2017).
- Electromagnetic LHDW EM-LHDW (high β_{e})
 - Propagating obliquely to **B**.
 - Characterized by magnetic field fluctuations.
 - Observed in the electron diffusion region. (e.g. Ji et al. 2004, Roytershteyn et al. 2012).
 - Concluded that it does not play an important role in supporting reconnection electric field under typical magnetospheric parameters (Roytershteyn et al. 2012).
- These two waves is the same mode with different characteristics.
 - Wave characteristics depend on β_{a} and the relative drift velocity between electrons and ions.

Why Revisit LHDW?

- With a guide field, the ES-LHDW may exist inside the current sheet since the guide field decreases β .
- Recent space observations show that ES-LHDW can impact on electron dynamics in the current sheet (L.-J. Chen *et al.* 2020 *Phys. Rev. Lett.*, J. Yoo *et al.* 2020 *Geophys. Res. Lett.*, Graham *et al.* 2019 and 2022).
 - Non-gyrotropic electron heating and vortical flows

Lower Hybrid Drift Wave in Space

- Observed by MMS at the magnetopause (Ergun et al. 2017, Chen et al. 2017).
- $B_g \sim 0.5B_{rec}$.
- The density ratio across the current sheet is about 3.
- Region A (electron diffusion region)
 - fluctuations in **B**.
- Region B (inside the current sheet)
 - Strong fluctuations in **E** and n_e .
 - $\circ \quad k\rho_e \sim 0.7.$
 - Propagating almost perpendicular to **B**.

Yoo, et al. GRL 2020

Special Probe has been Constructed for Study of Electron Heating and Momentum Transfer Associated with LHDWs in MRX

A moderate GF ~ 0.7 (#191235) case with ES-LHDW activity

- Correlated density and electric fluctuations inside the electron diffusion region anomalous resistivity (drag).
- Wave energy is concentrated below f_{IH} .

Local Linear Models have been Developed for Study of LHDWs in the current sheet

- Following Ji et al. 2005,
 - Ion rest frame.
 - No temperature gradient.
 - No k_v local analysis.
 - Kinetic treatment for ions (isotropic Maxwellian).
 - Fluid treatment for electrons.
- The parallel electron velocity component is added.

Yoo et al. 2020 (collsionless), Yoo et al. 2022 (collisional)

Improvements over Previous Models

- Dispersion for arbitrary angle θ can be obtained.
 - Only $\theta = 90^{\circ}$ in Davidson et al. 1977.
- Electromagnetic effects are included Faraday's equation is used.
 - Poisson's equation was used in Davidson *et al.* 1977
- The electron inertia term is included.
- All terms associated with the density gradient, self-consistent with the perpendicular drift are included.
- Electron temperature anisotropy is allowed.
 - Both zeroth and first orders collisionless model
 - Only first order collisional model
- Independent calculation of the perturbed electron density to include effects from electrostatics.
 - Important for ES-LHDWs
- The electron heat flux, heat generated by collisions, and resistivity are included.
 - Closures by Ji and Joseph 2018 and Ji and Held 2013

Linear Stability Analysis has been done for Discharge **#191235** via Collisional Model

- Maximum growth rate, $0.2\omega_{LH}$ at $(k\rho_e, \Theta) = (0.63, 90^\circ)$.
- Frequency with the maximum growth rate $\sim 0.27 f_{LH}$. \circ In the lab frame, the dominant frequency is about $0.5 f_{LH}$.

 - The difference may be explained by the Doppler shift. $(u_2 \sim 5 \text{ km/s})$ 0

•
$$\omega_{LF} = \omega + \mathbf{k} \cdot \mathbf{u}_{i} \sim 0.25 \ \omega_{LH} + 0.63 u_{iz} / \rho_{e} \sim 0.45 \omega_{LF}$$

ES-LHDW is Capable of Generating Anomalous Resistivity

- In both space and laboratory observations, ES-LHDW can generate density fluctuations that have positive correlation with fluctuations in the reconnection electric field.
 - Phase difference is typically 30-40 degrees.

Yoo et al. Phys. Rev. Lett. 2024

To Understand the Relation between $\delta n_{_{e}}$ and $\delta E_{_{rec}}$, the x Component of Electron Momentum Equation is Analyzed

- Ignoring the inertial term, resistivity, and Lorentz force, electrostatic modes have:
 - $\circ \quad \mathsf{ik}_{\perp}\mathsf{p}_{\mathsf{e}\mathsf{1}\mathsf{x}} + \mathsf{en}_{\mathsf{0}}\mathsf{E}_{\mathsf{1}\mathsf{x}} = \mathsf{0}.$
 - In the isotropic limit, $p_{e1x} = n_{e1}T_{e0}$, which means:
 - i. $n_{e1}/n_0 = [ie/(k_{\perp}T_{e0})]E_{1x}$.
- In our formulation for LHDWs, we have four additional terms on RHS
 - Inertial term: $[m_e(\omega \mathbf{k_0} \cdot \mathbf{u_{e0}})/(k_{\perp} T_{e0})]u_{e1x}$.
 - Lorentz force term: $[ieB_0/(k_{\perp}T_{e0})]u_{e1y}$ $[ieu_{e0z}/(k_{\perp}T_{e0})]B_{1y}$.
 - Perturbed temperature: $-T_{e1}/T_{e0}$
 - Resistivity term: $-iR_{e1}/(k_{\perp}n_{0}T_{e0})$.

Lorentz Force Terms are the Key for the Anomalous Resistivity by ES-LHDW

- Only Lorentz force terms have a significant real part, which is the key for anomalous resistivity.
- Contributions from the resistivity and inertial terms are negligible.

Anomalous Momentum Transfer and Heating are Estimated via Quasilinear Analysis

Physical Meaning	Expression	Value
Reconnection electric field	$\langle E_{rec} \rangle$	80 V/m
Anomalous resistivity	〈δn _e δE _{rec} 〉/n _{e0}	16 V/m
Classical (Spitzer) resistivity	$\eta_{ }J_{ }$	7 V/m
Anomalous electron heating	⟨δJ _e ·δ R ⟩	2.3 MW/m ³
Classical electron heating	$\eta_{\parallel}J_{\parallel}^{2}+\eta_{\perp}J_{\perp}^{2}$	2.0 MW/m ³

• Every first-order physical quantities can be expressed in terms of δE_{rec} . • For example, $\delta n_e = A \delta E_{rec}$ (A is a complex number), $\langle \delta n_e \delta E_{rec} \rangle = 0.5 |A| |\delta E_{rec}|^2 \cos \varphi$.

Statistical Analysis of Electron Heating

- In both intermediate and high GF cases, there are positive correlations between $|\delta E_{rec}|$ and T_{a} .
 - More electron heating is expected with the same wave amplitude for the high GF case.

Low-β Laser-driven Reconnection Experiments -Ion Acoustic Waves and Electron Acoustic Waves

- Free energy source field aligned current and electron beams
- IAWs require $T_i \ll ZT_e$.

Collective Thomson Scattering: $2\omega @ 527 \text{ nm}$ $150 \text{ J}, 60 \times 60 \times 50 \ \mu m^3$ f/10 reflective

Zhang et al. 2023

Direct Measurement of IAW and EAW during Magnetic Reconnection in a Laboratory Plasma

Large electron flow velocity with respect to ions is needed to reproduce the asymmetric IAW and two-stream electrons to reproduce EAW peaks

FLARE is under Infrastructure and Power System Upgrade (93% Completion)

Parameters	MRX	FLARE
Device diameter	1.5 m	3 m
Device length	2 m	3.6 m
Ohmic heating	No	Yes
Reconnection field	0.03T	0.1T
Guide field	0.06T	0.5T
Stored energy	~30 kJ	~6 MJ
S (anti-parallel)	600-1,400	5,000-16,000
Size, λ=(Z/d _i)	35-10	100-30
S (guide-field)	3,000	100,000
Size, λ=(Z/ρ _s)	200	1,000

To be operated as a US-DOE collaborative research facility

Reconnection Phase Diagram

Possible FLARE Projects Associated with Waves

- 1. Lower hybrid waves (very plausible)
 - a. Potentially, over 400 measurement points of $\delta \mathbf{B}$ covering the ion diffusion region (IDR) are available with magnetic probe arrays and a new data acquisition system (up to 50 MSPS).
 - b. We can study where lower hybrid waves are generated and propagated.
- 2. Alfvén waves (plausible)
 - a. Magnetic probes covering the MHD scale.
 - b. Capability to achieve a longer discharge time.
 - i. Covering Kinetic Alfvén waves with high guide field is very plausible.
- 3. Whistler and electron cyclotron waves (need R&D)
 - a. Need special probes and data acquisition systems to cover 0.2–2 GHz.
- 4. Plasma waves (need R&D)
 - a. Plan to develop new electrostatic probes to cover 10 GHz range.

Summary

- Whistler waves near the low-density side separatix indicates the precise location of the electron mixing region.
- LHDWs have been observed in both space and laboratory (MRX).
 - Yoo et al. GRL 2020, Hu et al. RSI 2021, Yoo et al. PRL 2024.
- ES-LHDW is capable of generating anomalous resistivity and electron heating.
 - The Lorentz force term is the key for the positive correlation between δn_{a} and δE_{rec} .
 - Anomalous electron heating exceeds the classical electron heating.
- Ion acoustic waves and electron acoustic waves have been observed in laser-drive magnetic reconnection.
 - Potentially important in certain astrophysical plasmas.
- FLARE will provide good opportunities for studying waves during reconnection.
 - Initial targets lower hybrid waves 2D measurements covering the IDR.
 - Kinitic Alfvén waves, whistler waves, and plasma waves in the future.