

Magnetic Reconnection Plasma Thruster

Fatima Ebrahimi (Princeton University/PPPL)

2024 IPELS-16 Workshop

Gharching, August 7, 2024

• LDRD team

Art. Brook, Robert Lunsford, Nicholas O'Gorman, Peter Titus, Jiawen Wang, Andrew Yard

• Philip Efthimion, Jon Menard, Roger Raman

Magnetic reconnection energizes many processes in laboratory and astrophysical plasmas

0.3

0.2

0.1

Z Axis

-0.1

-0.2

-0.3

-0.4

I -In astrophysical disks Magnetic islands in accretion flows

- 0.5 - 0 - -0.5 - -1

-1.9

Rosenberg & Ebrahimi ApJL 2021

II- In a tokamak ELM nonlinear dynamics

Ebrahimi & Bhattacharjee NF 2023

From laboratory to large-scale fusion experiments (to explore multi-scale reconnection problem)

Experiment

DRIVING COILS **EF COILS**

DE FIELD COILS

FLUX CORES

NA SOLENCH

Simulation

NSTX

ST40 MC

Ji & Daughton 2011

- 1- Due to a primary instability
- 2- Nonlinear dynamics turbulence (dynamical vortices)
- **3-** Externally forced reconnection to provide reconnection sites inductively or via helicity injection
- **4- During flux expansion or due to strong current ramp up**

1) Nonlinear edge P-B modes do generate current sheets.

Ebrahimi & Bhattacharjee, Nucl. Fusion 2023 Ebrahimi PoP 2017 As edge plasma interchangeably is displaced by the ballooning modes, local edge current sheet could form.

ELM crash: Reconnection physics via full extended MHD is needed for correct relaxation dynamics.

1) How about current sheet formation due to a primary instability? (and cause secondary reconnection)

7

2- Magnetic reconnection sites are formed via 3D turbulence (dynamical vortices)

I -In astrophysical disks Magnetic islands in accretion flows

Rosenberg & Ebrahimi ApJL 2021 Ebrahimi & Pharr ApJ 2022 II- Observation: Surface of the sun

Chian et al. MNRAS 2023

Merging current-sheets in 3D form plasmoids

3- Externally forced methods would provide reconnection sites

Compact ST-based fusion reactors require innovative plasma startup

• Merging compression on START, MAST, UTST, and recent ST40 experiments

- Transient coaxial helicity injection on HIT-II and NSTX (This talk)
- Sustained and local helicity injection on HIT-II and Pegasus

Fundamental reconnection physics, including plasmoid physics, has been demonstrated during plasma start-up in NSTX

Fundamental reconnection physics, including plasmoid physics, has been demonstrated during plasma start-up in NSTX

PRL 114, 205003 (2015)

PHYSICAL REVIEW LETTERS

week ending 22 MAY 2015

Plasmoids Formation During Simulations of Coaxial Helicity Injection in the National Spherical Torus Experiment

F. Ebrahimi¹ and R. Raman² ¹Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08543, USA ²University of Washington, Seattle, Washington 98195, USA (Received 2 March 2015; published 20 May 2015)

The formation of an elongated Sweet-Parker current sheet and a transition to plasmoid instability has for the first time been predicted by simulations in a large-scale toroidal fusion plasma in the absence of any preexisting instability. Plasmoid instability is demonstrated through resistive MHD simulations of transient

New concept for plasma rocket exploits the mechanism behind solar flares

The magnetic reconnection plasma drive

Princeton plasma physics experiment and simulations show evidence of new acceleration method

Ebrahimi/Princeton University patent pending USPTO No. 63/085,660 Ebrahimi JPP 2020

Magnetic helicity injection is combined with axisymmetric fast magnetic reconnection

Magnetic helicity injection is combined with axisymmetric fast magnetic reconnection

Simulations are performed using extended MHD NIMROD code

Solves the linear and nonlinear MHD equations

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} + \kappa_{divb} \nabla \nabla \cdot \mathbf{B}$$
$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \mathbf{J} \times \mathbf{E}$$
$$\mathbf{J} = \nabla \times \mathbf{B}$$
$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}) = \nabla \cdot D\nabla n$$
$$\rho(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}) = \mathbf{J} \times \mathbf{B} - \nabla P - \nabla \cdot \Pi$$

$$\frac{n}{(\Gamma-1)}(\frac{\partial T_{\alpha}}{\partial t} + \mathbf{V}.\nabla T_{\alpha}) = -p_{\alpha}\nabla.\mathbf{V} - \nabla.\mathbf{q}_{\alpha} + \mathbf{Q}$$

q = -n[(κ_{||} - κ_⊥)b̂b + κ_⊥I] · ∇T
Π is the stress tensor (also includes numerical ρν∇V)

Finite Element Mesh

- Poloidal grid 45 x 90 fifth/sixth order finite elements, 2-D (n=0) and 3-D (up to n= 22 toroidal modes)
- Voltage is applied across the injector gap (*Vinj*) *Ex B* normal flows at the gaps

[Bayliss, Sovinec & Redd 2011; Hooper et al. 2012;Ebrahimi et al. 2013; Hooper et al. 2013]

Sweet-Parker current-sheet scaling needs to be incorporated in the classical tearing model

Now <u>a</u> (current sheet width) must be replaced with the S-P scaling $\mathbf{a} \sim L/\sqrt{(S_L)}$

$$au_A = a/V_A ==> L/(\sqrt{(S_L)}V_A ==> 1/\sqrt{S_L}\tau_A$$

 $S = aV_A/\eta ==> L/(\sqrt{(S_L)}V_A/\eta ==> S_L^{1/2}$
Replacing above into the maximum growth rate eq. gives:

 $\gamma_{\max} au_A \sim S_L^{1/4}$ at $(k_{max} L \sim S_L^{3/8})$

(Tajima & Shibata 1997 Plasma Astrophysics, Loureiro et al. 2007) & Bhattacharjee et al. 2009

Here : $\tau_A = L/V_A$ and $S_L = LV_A/\eta$ (L is the length of the current sheet)

Now the growth rate has a positive exponent S scaling

Experiments and simulations in NSTX have proven the Transient Coaxial Helicity Injection (CHI) as a primary and scalable candidate for solenoid- free startup in STs

[Experiments: Raman et al. PRL 2003, 2006]

[Simulations: Ebrahimi PoP 2019,2016, Ebrahimi et al.

PoP 2013, Ebrahimi&Raman PRL 2105, NF 2016]

Novel fusion concept using plasmoid reconnection (a double null configuration)

Plasmoid reconnection fusion concept. <u>Princeton University (USPTO No. 63/085,660)</u> <u>Ebrahimi</u>

Continuous merging using helicity injection plasmoids. All the fueling and heating is done by plasmoid reconnection.

"Nuclear Fusion Inspires New Rocket Plasma Thruster Design"

An Alfvenic Reconnecting Plasmoid Thruster

Princeton University (USPTO No. 63/085,660)

• We are in the design/build stage of a magnetic reconnection thruster at PPPL using a 3-year internal lab funds.

633

An Alfvenic reconnecting plasmoid thruster Part of: Featured Articles

Fatima Ebrahimi

Published online by Cambridge University Press: 21 December 2020, 905860614

Plasma MRT occupies the current gap for deep space travel

Easier refueling: Flexible propellant Efficient: Accelerate plasma ions to high velocity

Powerful: Large, continuous, and adjustable thrust

 $\Delta v = v \ln (m_0/m_f)$

21

Magnetic reconnection is essential for high exhaust velocity

-4e-2

8.e-2

12

-1.0

-1.2

-1.4

-1.6

0.4

0.6

0.8

R (m)

1.0

- Outflow velocities obtained in the simulations
- Magnetic configuration has essential role in inducing reconnection in this thruster

The plasmoid instability is triggered

- The static fields B^D_p and B^S_p radially pinch the injector field around the injector gap to form a primary exhaust reconnecting current sheet
- The plasmoid instability is here triggered at local Lundquist number S ~ 12 000 (based on Bz ~ 500 G, L = 0.5 m and η = 16 m2 s-1).

Cyclic ejection of large-scale axisymmetric plasmoids is observed

- As the first plasmoid is already ejected, the open field lines start to close again and a large-volume closed field line in the form of a second plasmoid is formed and departs the device with a high outflow velocity of about 460 km s-1.
- The maximum outflows are both along the exhaust current sheets in the form of outflow jets, as well as along the plasmoids.
- Cyclic ejection of large-scale axisymmetric plasmoids is around 10 μs (4–5 Alfven transit times).

Ebrahimi JPP 2020

Momentum-carrying plasmoids are formed during three-dimensional global MHD simulations

Subsequent ejection of a large plasmoid durig Hall reconnection with large exhaust velocity

Current density

Exhaust velocity

MHD simulations for a small-scale device

Favorable magnetic field scaling also obtained

• Plasmoid size as well as **average** speed increases (up to ISP of 50000 s) with the reconnecting field. No guide field here.

PMRT System Design (building at PPPL)

1

Simple structure, low-cost in manufacturing/assembling

Vacuum Vessel:
 40" × 70" 5-mm Stainless steel

Plasma Chamber:
 ID: 0.1-m – OD: 0.3-m – Length: 1.2-m
 Copper (Glidcop) with tungsten coating

Thrust measurement:

 Can be changed to horizontal arrangement by adding supporting structure

No electrodes for lower electrode erosion

Kush Maheshwari+ poster

1.5

2.0

2.5

0.5

1.0

Time [s]

- Generate asymmetry using outflow direction **B** pressure gradient
- Initial displacement measurement data (for thrust) on MRX is promising

Displacement/thrust measurement apparatus

Orange box: desired

operational regime, approaching the MHD collisional limit ions contribute in the reconnection process for propulsion $\lambda \sim 40$

oid reconnection thruster concept clude a unique fusion concept. ity (USPTO No. 63/085,660)

> Graphics by SciVista

- **Understand and predict** 3-D MHD simulations have shown that system-size plasmoid formation can produce large plasma startup current in spherical tokamaks and a large-fraction conversion of injected open flux to closed flux.
- **Explore** Continuous plasmoid injection due to spontaneous reconnection could be the key for steady-state current-drive. New magnetic configuration is being investigated.

A reconnecting plasmoid thruster is highly scalable

- Exploits magnetic reconnection to convert magnetic energy to kinetic energy with high exhaust velocity
 - Experiments at NSTX and simulations using state-of-the-art 3D computational models running on NERSC supercomputers provide a firm scientific foundation for the propulsion concept