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SCIENCE ADVANCES | RESEARCH ARTICLE

SPACE SCIENCES

New science in plain sight: Citizen scientists lead to the
discovery of optical structure in the upper atmosphere

Elizabeth A. MacDonald,"** Eric Donovan,® Yukitoshi Nishimura,*> Nathan A. Case,®

D. Megan Gillies,® Bea Gallardo-Lacourt,*> William E. Archer,>" Emma L. Spanswick,*
Notanee Bourassa,” Martin Connors,>®° Matthew Heavner,?"'? Brian Jackel,® Burcu Kosar,'?
David J. Knudsen,® Chris Ratzlaff,” lan Schofield®
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Steve (and the picket fence) are
associated with extremely fast (>5 km/s)
plasma flows in the ionosphere, called
Sub-Auroral lon Drifts (SAIDs).

25 July 2016
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'STEVE Spectrum:

Luminosity
[R per spectral bin]
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The Only Current Theory for STEVE's Continuum Emission

A Mechanism for the STEVE Continuum Emission Harding et al.
(2020)

Brian J. Harding'""~ , Stephen B. Mende!" "', Colin C. Triplett' "', and Yen-Jung Joanne Wu'

fastion — N3y — ion+ Na(v = |1)
Na(v= 11+ 0O - NO+N

Fast-flowing ions flows in SAID o | wso-mo
channels collide with and
vibrationally excite N, overcoming
the activation energy of the

N, + O — NO + N reaction. The
resulting NO combines with

ambient O, producing NO, and
spectrally broad light. e LT

lon Drift Speed Field




But this theory doesn't explain everything. . .
Courtesy of Brian Harding

- Sutoh et al. (1980) NO2 spectrum
Gillies et al. (2019) purple/white arc

NO, laboratory
spectrum does not
match observations
at blue end
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But this theory doesn't explain everything. ..
) Nishimura et al. (2023)

Emission |
timescales predict =
that STEVE should ~ °
be a smooth arc, [
imaging reveals P A ROEE T e s T SRR VO 34
substructure

which this theory

cannot explain.

v 2 2022=-08=08/086:3 700",

...S0 the excitation mechanism remains an open guestion.



STEVE emissions are not thought to be due to

precipitation, but the specific generation mechanism

remains a mystery.

What about the picket fence?



Farly observations suggested that picket fence emissions may be
driven by electron precipitation, just like the aurora

Magnetospheric Signatures of STEVE: Implications
for the Magnetospheric Energy Source and
Interhemispheric Conjugacy

Y. Nishimura®?' |, B. Gallardo-Lacourt’ ', Y. Zou*® ', E. Mishin®/ |, D. J. Knudsen® ',
E. F. Donovan® ', V. Angelopoulos’ ', and R. Raybell®

Abstract we present three STEVE (strong thermal emission velocity enhancement) events in

conjunction with Time History of Events and Macroscale Interactions (THEMIS) in the magnetosphere

and Defense Meteorological Satellite Program (DMSP) and Swarm in the ionosphere, for determining

equatorial and interhemispheric signatures of the STEVE purple/mauve arc and picket fence. Both types of

STEVE emissions are associated with subauroral ion drifts (SAID), electron heating, and plasma waves. The

magnetosphere observations show structured electrons and flows and waves (likely kinetic Alfven,

magnetosonic, or lower-hybrid waves) just outside the plasmasphere. Interestingly, the event with the picket

fence had a >~1 keV electron structure detached from the electron plasma sheet, upward field-aligned

currents (FACs), and ultraviolet emissions in the conjugate hemisphere, while the event with only the

mauve arc did not have precipitation or ultraviolet emission. We suggest that the electron precipitation (Nishimura et
drives the picket fence, and heating drives the mauve as thermal emission. al., 2019)




Typical Green Auroral Spectrum..
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Picket Fence:Spectrumg
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Auroral NS IN to GL VER Ratio

Electron transport GLOW Model _Opservable L.
models predict >0
that N,* 1N 5%
emissions should g 2
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aurora produced ) 0,5;
by particle
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What might energize the
superthermal electron
population that drives
the picket fence?
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Hypothesis: Electric
fields parallel to the
magnetic field in the
collisional base of the
ionosphere

Ey (mV/m)

Karlsson + Marklund (1998)




Using spectral observations from the picket fence, we constrained the
expected ratio between the oxygen green line and N, 1P red emissions.
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The TREx Spectrograph

Comparing GL and N> 1P (642-700 nm) Luminosity
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Can a model driven by parallel electric fields replicate the observed ratio between
GL and N, 1P while also NOT producing N,* 1N emissions?




. . (a) Input Atmospheric
Picket Fence Modeling Flowchart MSIS, IRI, IGRF and Tonospheric Profiles

Kinetic Modeling

(b) 10° EEDF at 110 km for Various Electric Field Strengths
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In a realistic neutral atmosphere, we model -
changes in the electron energy distribution
function (EEDF) under the influence of
parallel electric fields.

(b) EEDF: Py(¢)

EEDF Py(e) (eV™])

Electron Impact Excitation Cross Section (cmz)

-rom the EEDFs and electron impact 10
' ' ' . I 25 50 75 10.‘0 12.5U 150 17.5 20.0 225 250

excitation cross sections, we obtain Flectron Enerey ¢ (<)

electron impact excitation rates.
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Modeled Volume Emission Rates (VERs) at 110 km

<

Excitation Rates

Additional steady-state modeling applies 2 [ b e ]
the effects of quenching and cascade from |
higher energy states, allowing us to
calculate volume emission rates (VERs) as
a function of altitude and electric field
strength. e

Parallel Electric Field (Td) [ (d) Volume ]
Gasque et al., (2023)

VER (pholons/cm"/s)
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Kinetic Modeling: Effect of Parallel Electric Fields on EEDF

EEDF at 110 km for
Various Parallel Electric Field Strengths
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Increasing the
applied parallel
electric field
strength stretches
the tail of the
electron energy
distribution function

to higher energies h 5 20
Electron Energy (eV)

_

|
[a—
~J

| —
S
[
o0

=
o
=~
g 4
- =
QO O
bl
M =
5 S
S O
o, O
= w
S 2

o
o =
5(_)
L0
_1—|
]




N> 1P to GL VER Ratio
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Results: The specific emission ratio observed in the picket fence can
be produced by ~80-150 mV/m parallel electric fields at 110 km

...s0 the parallel electric fields hypothesis is viable...



Other Picket Fence-like Emissions

* Fragmented Aurora-like Emissions
(Dreyer et al., 2021)

Dreyer et al. (2021)

31



Other Picket Fence-like Emissions

 Fragmented Aurora-like Emissions “Regular” Aurora Enhanced Aurora
(Dreyer et al., 2021)

* Enhanced Aurora (Hallinen et al.,
1985H)

* Modeling (Karlsson et al., 2005)
suggests these could be
generated by parallel electric
fields in the downward current
region.

* May occur as often as 50% of
the time that the aurora is visible 1 ]

Credit: Vincent Ledvina, theauroraguy.com



Next Step: Submitted Rocket
Mission Proposal

Proposed to send a
rocket through the
enhanced aurora to
measure the theorized
parallel electric fields for
the first time.

This is a pathway mission
for a STEVE/picket fence
rocket.



Summary: It’s Not Easy Being Green  iomstions chec

out the paper!

* Observations of picket fence spectra differ
quantitatively from green aurora spectral observations,
suggesting different origins.

* Kinetic modeling driven by local parallel electric fields
replicates picket fence spectra without requiring
particle precipitation.

* At 110 km, parallel electric fields between 40 and 70 Thank you for your
Townsend (~80 to 150 mV/m at 110 km) reproduce attention!
observed picket fence spectra. -

Any questions?

* Enhanced aurora may also be produced locally by a
parallel electric field — we've submitted a rocket

proposal to attempt to measure these fields. g, me:

lcgasque@berkeley.edu
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