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" Highlight of this talk:
Rec. heating and its application for fusion plasma scenarios
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Qutline

(WTS-6 experiment (U-Tokyo) :2ST40 experiment (Tokamak Energy)

® |[on heating/transport in flux ! ® Quick review of high field
tube merging configuration @ application in ST40

® Sustainment/confinement of | ® First measurement of both
lon heating inside the closed: Ion and electron temperature
flux surface after merging profile during Rec. heating

Detailed investigation of reconnection | Application of reconnection heating in the
process with in-situ probe diagnostics ;| keV range (in-situ probes are not available)
» 2D magnetic diagnostics is available i » 30CH Thomson scattering

» 2D 96CH/320CH Doppler tomography  » 32CH/96CH Doppler tomography



Typical feature of ion heating during magnetic reconnection in TS-6
~ ions are heated in the downstream region of outflow jet ~

(a) Geometry of magnetic reconnection
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Typical feature of ion heating during magnetic reconnection in TS-6
~ lons are heated in the downstream region of outflow jet ~

. >

* double-peak T, profile t=061lus  1=Tdps  1=87pus
by Rec. heating

AR 123

=7

] > X-point

T,[eV]

Comparison with solar flare

eatmg

z [m]

(a) Geometry of magnetic reconnection
T, [eV]

0.04

40 ;/,-‘ 70HS'

0.02

z [m]

0.00

-0.02

—0.04

0.10 0.15 0.20 0.25
r [m]

(b) Time evolution of T’ profile (movie)

o Leateteee .
0.10 0.15 0.20 0.25
r [m]

Double-peak T; structure



Confinement of reconnection heating in the downstream region
~ Reconnected fields lines form closed flux surface after merging ~
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After the end of merging, the heated ions are
sustained/confined inside the closed flux surface

A B3® X-point
<:T:>15691/ ]Kwaﬂ
My —— —-

........

AR A
SR IR NN\ I M A RV e T N A
AR

............

U TARRSEN
\‘&‘\\QS
R
W
\\‘
)

I; [eV]
30

0:

2021 ___ iz Y % W
0.055 r[m] 0.375 0.08 0.27 r [m] 0.08 0.27

£.0.00 FElass

N

mmm e

B,~0.15T, B,,~0.03T, @, 7; >> 1 »Perpendicular heat conduction is strongly
(guide field ratio B/B,,. ~ 5) suppressed: & ,/k , ~ 2(w,;7;)* >> 1

rec ci i .



The structure is clearer with full-2D T, imaging measurement
~ Rec. originated high T, area propagates globally in the poloidal direction ~
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4
The structure is clearer with full-2D T, imaging measurement

~ Rec. originated high T, area propagates globally in the poloidal direction ~
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Revisit of heating scaling: AT; < B, *x B 2 | 2 o IF,F
~ Reconnection heating power can be upgraded by mcreasmg or!

Reconnection heating AT, increases in proportion to B,,.>and |,
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High Field application of Rec. heating in ST40
~ Rec. heating Is routinely used to form high temperature plasma ~

ST40 device (R, ~ 40cm) X-ray Doppler Visible image
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High Field application of Rec. heating in ST40
~ Rec. heating is routinely used to form high temperature plasma ~

ST40 device (R, ~ 40cm) Standard plasma scenario in ST40:
® High /, startup by merging: /,~ 0.5MA

" ® T. ~1keV plasma startup by Rec. heating
i § > © ® Auxiliary heating to 10keV by NBI
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High Field application of Rec. heating in ST40

~ Rec. heating is routinely used to form high temperature plasma ~

ST40 device (R,~ 40cm) Standard plasma scenario in ST40:

® High /, startup by merging: /,~ 0.5MA
m ® T. ~1keV plasma startup by Rec. heating

i P < © ® Auxiliary heating to 10keV by NBI

[OPEN ACCESS|

1OP Publishing | international Atomic Energy Agency Nuclear Fusion
Nucl. Fusion 63 (2023) 054002 (6pp) https://doi.org/10.1088/1741-4326/acbec8
Letter

Achievement of ion temperatures in
excess of 100 million degrees Kelvin
in the compact high-field spherical
tokamak ST40
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High Field application of Rec. heating in ST40

~ Rec. heating is routinely used to form high temperature plasma ~

ST40 device (R, ~ 40cm) Before 2023 during COVID-19

i Wy,
H T

® First plasma in 2018 and 2.3keV
achievement of T, by Rec. heating

® 10keV achievement of T, in 2022

® Profile measurement was not available

From 2023 after MR2023 meeting

® homson scattering measurement of
T, and n_ was installed in 2023

® U-Tokyo Doppler tomography restarted

the measurement of T, profile y




Thomson Scattering measurement started from 2023
~ 1keV plasma formation by Rec. heating is now confirmed by TS ~
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Diagnostics collaboration in ST40 (2D Doppler tomography Is
shipped from U-Tokyo to ST40): 32CH in 2023 - 96CH in 2024

® Now we can use profile measurement of 7;, 7_,and n,
® Upgrade of Doppler tomography has been completed

(32CH > 96CH: 2D imaging of T:is now available in ST40)




First 2D imaging measurement of T, in ST40

Reference model Time evolution of 2D T, profile with EFIT
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Reconnection heating structure becomes clearer
by adjusting the color bar range (700eV = 250eV)

Reference model Time evolution of 2D T, profile with EFIT
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At the similar timings, electron heating is also observed
~ 1D 30CH Thomson scattering measurement of T, and n, ~

7. increases around the n, profile shows radial
X-point (or magnetic axis) motion at £= 5ms and bms
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Synchronized measurement with ion Doppler tomography
~ Full pressure profile measurement of ions and electrons has started! ~
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Triple-peak n, might be on-axis of acceleration path

In MAST, 2D n, protile shows similar 2D CVI emission Hproﬁle in ST40
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Detection of the MAST-like localized
electron heating around the X-point in ST40

Reference from MAST
MAST-like clear peak structure of 7_has
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After merging, radial compression is also applied to enhance the pressure

~ The M/C electron heating record in MAST has been updated in ST40 ~

Te profile (0—1.4keV)
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The reconnection heating scaling is now upgraded to the
full pressure one: AT, &< B, * o< B2 2 AU; & B> o B2
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Summary and conclusion

The application experiments of reconnection heating
for fusion In TS-6 and ST40 have been introduced

Physics Exp.:

1. Magnetic reconnection heat ions in the downstream of outflow jet

2. MAST-like peaked T, was reproduced by reconnection heating in ST40
3. The heated plasmas are well confined inside the closed flux surface

High field application:
1. Rec. heating scenario is successfully connected to semi-steady operation
2. Application of reconnection heating Is upscaled to the keV range in ST40

3. AT, < B,..? scaling is upgraded to thermal energy one: AU, o« B, .2
("‘ 30% of Brecz QAUI In ST40) 25




Related talks/posters from our group (Merging Exp.)

®Yasushi Ono (16:40 ~17:00 Monday):
High power ion heating by magnetic reconnection in
two merging toroidal plasmas with high guide field

®Michiaki Inomoto (10:40 ~ 11:00 tomorrow):
Effects of spontaneously-generated and artificially-
controlled electrostatic fields in high guide-field
magnetic reconnection in laboratory experiment

®S. Takeda (13:00 ~ 17:00 (poster) today/tomorrow):
Localized electron acceleration at X-point during
magnetic reconnection of two merging tokamak plasmas

Y. Ono’s talk on Monda

Artificial control
of potential profile

More details about the
2D SXR imaging of high
energy electrons
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Summary and conclusion

The application experiments of reconnection heating
for fusion In TS-6 and ST40 have been introduced

Physics Exp.:

1. Magnetic reconnection heat ions in the downstream of outflow jet

2. MAST-like peaked T, was reproduced by reconnection heating in ST40
3. The heated plasmas are well confined inside the closed flux surface

High field application:
1. Rec. heating scenario is successfully connected to semi-steady operation
2. Application of reconnection heating Is upscaled to the keV range in ST40

3. AT, < B, .2 scaling is upgraded to thermal energy one: AU, o B, .
(30% of Bre02 QAUI N ST40) 27
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