Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS-16) Plenary 6, 79, 11:15-11:45, 5/Aug.

Particle acceleration/heating of high guide field reconnection in merging spherical tokamak formation experiments

Hiroshi Tanabe¹(University of Tokyo)

H. Tanabe¹, R. Someya¹, T. Ahmadi¹, M. Gryaznevich², D. Osin², H. Willet², H. Lowe², M. Inomoto¹ and Y. Ono¹ 1) University of Tokyo, 2) Tokamak Energy Ltd.

This work was supported by Grants-in-Aid for Scientific Research 19H01866, 20H00136, 20H01879, 20KK0062, 22H01193, 23KF0194 and 23KK0246,, and NIFS Collaboration Research programs NIFS22KIIF004 and NIFS24KIIS008. ¹

Highlight of this talk: *Rec.* **heating and its application for fusion plasma scenarios**

Outline

- Ion heating/transport in flux tube merging configuration
- Sustainment/confinement of ion heating inside the closed flux surface after merging

Detailed investigation of reconnection process **with in-situ probe diagnostics**

➢ 2D magnetic diagnostics is available ➢ 2D 96CH/320CH Doppler tomography

①TS-6 experiment (U-Tokyo) ②ST40 experiment (Tokamak Energy)

- Quick review of high field application in ST40
- First measurement of both ion and electron temperature profile during *Rec.* heating

Application of reconnection heating in the **keV range** (in-situ probes are not available)

- ➢ 30CH Thomson scattering
- ➢ 32CH/96CH Doppler tomography

Typical feature of ion heating during magnetic reconnection in TS-6 ~ ions are heated in the downstream region of outflow jet ~

Typical feature of ion heating during magnetic reconnection in TS-6 ~ ions are heated in the downstream region of outflow jet ~

Confinement of reconnection heating in the downstream region *~ Reconnected fields lines form closed flux surface after merging ~*

After the end of merging, the heated ions are sustained/confined inside the closed flux surface

 $B_t \sim 0.15$ T, $B_{rec} \sim 0.03$ T, $\omega_{ci} \tau_{ii} >> 1$ (guide field ratio $B_t/B_{rec} \sim 5$) *Perpendicular heat conduction is strongly suppressed: i* $\frac{1}{2}$ /**k**^{*i*} $\frac{1}{2}$ ~ 2($\omega_{ci} \tau_{ii}$)² >> 1 7

The structure is clearer with full-2D Tⁱ imaging measurement **~** *Rec. originated high Tⁱ area propagates globally in the poloidal direction* **~**

- Reconnection heating initially forms localized hot spot in the downstream
- ⚫ High *Tⁱ* area propagates poloidally after merging
- Poloidally ring-like hollow *Tⁱ* profile is formed

The structure is clearer with full-2D Tⁱ imaging measurement **~** *Rec. originated high Tⁱ area propagates globally in the poloidal direction* **~**

Cross-field transport is strongly suppressed: $\kappa^i/\!/ \kappa^i_\perp \sim 2(\omega_{ci}\tau_{ii})^2 >> 1$ *H. Tanabe et al., Nucl. Fusion 61, 106027 (2021)*

Revisit of heating scaling: $\Delta T_i \propto B_{rec}^2 \propto B_p^2 \propto I_p^2 \propto I_{PF}^2$ *~* Reconnection heating power can be upgraded by increasing I_{PF} ! ~

*Reconnection heating ΔTⁱ increases in proportion to Brec ²*and *I^p* 2

- The origin of *B*_{rec} is poloidal field *Bp* and plasma current *I^p* (it is higher in a smaller device)
- Plasma current *I_p can be amplified by the driving coil current I_{PF}*

From the engineering point of view, driving current I_{PF} can be simply increased by upgrading power supply (capacitor bank)

ST40 device (R⁰ ~ 40cm) Standard plasma scenario in ST40:

- \bullet High I_p startup by merging: $I_p \sim 0.5MA$
- ⚫ **Tⁱ ~1keV plasma startup by Rec. heating**
- ⚫ **Auxiliary heating to 10keV by NBI**

Letter

Achievement of ion temperatures in excess of 100 million degrees Kelvin in the compact high-field spherical tokamak ST40

S.A.M. McNamara^{1,*} \bigcirc , O. Asunta¹ \bigcirc , J. Bland¹ \bigcirc , P.F. Buxton¹ \bigcirc , C. Colgan¹ \bigcirc , A. Dnestrovskii¹to, M. Gemmell¹to, M. Gryaznevich¹to, D. Hoffman¹to, F. Janky¹to, J.B. Lister¹, H.F. Lowe¹ ©, R.S. Mirfayzi¹ ©, G. Naylor¹ ©, V. Nemytov¹ ©, J. Njau¹, T. Pyragius¹ ©, A. Rengle¹ ©, M. Romanelli¹ ©, C. Romero¹ ©, M. Sertoli¹ ©, **P.** Thomas¹, J. Varje¹ ©, B. Vincent¹ ©, H.V. Willett¹ ©, J. Wood¹ ©, D. Zakhar¹ ©, D.J. Battaglia² [®], S.M. Kaye² [®], L.F. Delgado-Aparicio² ®, R. Maingi² ®, D. Mueller² ® M. Podesta² (D. E. Delabie³ (D. B. Lomanowski³ (D. O. Marchuk⁴ (D) and the ST40 Team¹

ST40 device $(R_0 \sim 40 \text{cm})$ Before 2023 during COVID-19

- ⚫ First plasma in 2018 and 2.3keV achievement of *Ti* by *Rec.* heating
- 10keV achievement of *T_i* in 2022
- ⚫ Profile measurement was not available

From 2023 after MR2023 meeting

- ⚫ Thomson scattering measurement of
	- *T^e* and *n^e* was installed in 2023
- ⚫ U-Tokyo Doppler tomography restarted the measurement of T_i profile 14

Thomson **S**cattering measurement started from 2023 ~ 1keV plasma formation by *Rec.* heating is now confirmed by *TS* ~

Diagnostics collaboration in ST40 (2D Doppler tomography is shipped from U-Tokyo to ST40): 32CH in 2023 → **96CH in 2024**

• Now we can use profile measurement of T_i , T_e and n_e ⚫ **Upgrade of Doppler tomography has been completed** (32CH \rightarrow 96CH: 2D imaging of T _{*i*} is now available in ST40)

First 2D imaging measurement of *Tⁱ* **in ST40**

Note: magnetic diagnostics just assumes single-axis and don't trust too much. (Reconnection might be still continuing. We can't use in-situ measurement)

Reconnection heating structure becomes clearer by adjusting the color bar range $(700eV \rightarrow 250eV)$

At the similar timings, electron heating is also observed ~ 1D 30CH Thomson scattering measurement of T_e and n_e

ⁿ^e profile shows radial motion at $t = 5$ **ms and 6ms**

Synchronized measurement with ion Doppler tomography ~ Full pressure profile measurement of ions and electrons has started! ~

Triple-peak *n^e* **might be** *on-axis* **of acceleration path**

If T_e measurement is well aligned on-axis, X-point heating would be also clearer

Detection of the MAST-like localized electron heating around the X-point in ST40

After merging, radial compression is also applied to enhance the pressure ~ The M/C electron heating record in MAST has been updated in ST40 ~

The reconnection heating scaling is now upgraded to the full pressure one: $\Delta T_i \propto B_{rec}^2 \propto B_p^2 \rightarrow \Delta U_i \propto B_{rec}^2 \propto B_p^2$

Summary and conclusion

The application experiments of reconnection heating for fusion in TS-6 and ST40 have been introduced

Physics *Exp.***:**

- **1. Magnetic reconnection heat ions in the downstream of outflow jet**
- *2. MAST-like peaked T^e was reproduced by reconnection heating in ST40*
- **3. The heated plasmas are well confined inside the closed flux surface**

High field application:

- *1. Rec.* **heating scenario is successfully connected to semi-steady operation**
- **2. Application of reconnection heating is upscaled to the keV range in ST40**

(∼ 30% of B_{rec}² → \triangle *U_i in ST40)* 25 $3.$ $\varDelta T_{i} \varpropto B_{rec}^2$ scaling is upgraded to thermal energy one: $\varDelta U_{i} \varpropto B_{rec}^2$

Related talks/posters from our group (*Merging Exp.***)**

⚫**Yasushi Ono (16:40 ~ 17:00 Monday):**

High power ion heating by magnetic reconnection in two merging toroidal plasmas with high guide field

⚫**Michiaki Inomoto (10:40 ~ 11:00 tomorrow):** *Effects of spontaneously-generated and artificiallycontrolled electrostatic fields in high guide-field magnetic reconnection in laboratory experiment*

⚫**S. Takeda (13:00 ~ 17:00 (poster) today/tomorrow):** *Localized electron acceleration at X-point during magnetic reconnection of two merging tokamak plasmas*

Summary and conclusion

The application experiments of reconnection heating for fusion in TS-6 and ST40 have been introduced

Physics *Exp.***:**

- **1. Magnetic reconnection heat ions in the downstream of outflow jet**
- *2. MAST-like peaked T^e was reproduced by reconnection heating in ST40*
- **3. The heated plasmas are well confined inside the closed flux surface**

High field application:

- *1. Rec.* **heating scenario is successfully connected to semi-steady operation**
- **2. Application of reconnection heating is upscaled to the keV range in ST40**

 $(30\% \text{ of } B_{rec}^2 \rightarrow \Delta U_i \text{ in } ST40)$ $3.$ $\varDelta T_{i} \varpropto B_{rec}^2$ scaling is upgraded to thermal energy one: $\varDelta U_{i} \varpropto B_{rec}^2$