Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS-16) Plenary 6, 79, 11:15-11:45, 5/Aug.

Particle acceleration/heating of high guide field reconnection in merging spherical tokamak formation experiments

Hiroshi Tanabe¹ (University of Tokyo)

H. Tanabe¹, R. Someya¹, T. Ahmadi¹, M. Gryaznevich², D. Osin², H. Willet², H. Lowe², M. Inomoto¹ and Y. Ono¹ 1) University of Tokyo, 2) Tokamak Energy Ltd.

This work was supported by Grants-in-Aid for Scientific Research 19H01866, 20H00136, 20H01879, 20KK0062, 22H01193, 23KF0194 and 23KK0246,, and NIFS Collaboration Research programs NIFS22KIIF004 and NIFS24KIIS008.

Highlight of this talk: *Rec.* heating and its application for fusion plasma scenarios

Outline

<u>1TS-6 experiment (U-Tokyo)</u>

- Ion heating/transport in flux tube merging configuration
- Sustainment/confinement of ion heating inside the closed flux surface after merging

Detailed investigation of reconnection process with in-situ probe diagnostics

> 2D magnetic diagnostics is available
 > 2D 96CH/320CH Doppler tomography

2ST40 experiment (Tokamak Energy)

- Quick review of high field application in ST40
- First measurement of both ion and electron temperature profile during *Rec.* heating

Application of reconnection heating in the **keV range** (in-situ probes are not available)

- > 30CH Thomson scattering
- > 32CH/96CH Doppler tomography

Typical feature of ion heating during magnetic reconnection in TS-6 ~ ions are heated in the downstream region of outflow jet ~

Typical feature of ion heating during magnetic reconnection in TS-6 ~ ions are heated in the downstream region of outflow jet ~

Confinement of reconnection heating in the downstream region ~ Reconnected fields lines form closed flux surface after merging ~

After the end of merging, the heated ions are sustained/confined inside the closed flux surface

 $B_t \sim 0.15 \text{T}, B_{rec} \sim 0.03 \text{T}, \omega_{ci} \tau_{ii} >> 1$ (guide field ratio $B_t/B_{rec} \sim 5$) $Perpendicular heat conduction is strongly suppressed: <math>\kappa^i / \kappa^i / \kappa^i \sim 2(\omega_{ci} \tau_{ii})^2 >> 1$

The structure is clearer with full-2D T_i imaging measurement ~ Rec. originated high T_i area propagates globally in the poloidal direction ~

- Reconnection heating initially forms localized hot spot in the downstream
- High T_i area propagates poloidally after merging
- Poloidally ring-like hollow
 T_i profile is formed

The structure is clearer with full-2D T_i imaging measurement ~ Rec. originated high T_i area propagates globally in the poloidal direction ~

H. Tanabe et al., Nucl. Fusion 61, 106027 (2021) Cross-field transport is strongly suppressed: $\kappa^{i}_{\prime}/\kappa^{i}_{\perp} \sim 2(\omega_{ci}\tau_{ii})^{2} >> 1$

Revisit of heating scaling: $\Delta T_i \propto B_{rec}^{2} \propto B_p^{2} \propto I_p^{2} \propto I_{PF}^{2}$ ~ Reconnection heating power can be upgraded by increasing I_{PF}^{2} ~

Reconnection heating ΔT_i increases in proportion to B_{rec}^2 and I_p^2

- The origin of B_{rec} is poloidal field B_p and plasma current I_p (it is higher in a smaller device)
- Plasma current I_p can be amplified by the driving coil current I_{PF}

From the engineering point of view, driving current I_{PF} can be simply increased by upgrading power supply (capacitor bank)

ST40 device ($R_o \sim 40$ cm)

) <u>Standard plasma scenario in ST40:</u>

- High I_{ρ} startup by merging: $I_{\rho} \sim 0.5$ MA
- T_i ~1keV plasma startup by *Rec.* heating
- Auxiliary heating to 10keV by NBI

OPEN ACCESS	
IOP Publishing International Atomic Energy Agency	Nuclear Fusior
Nucl. Fusion 63 (2023) 054002 (6pp)	https://doi.org/10.1088/1741-4326/acbec8

Letter

Achievement of ion temperatures in excess of 100 million degrees Kelvin in the compact high-field spherical tokamak ST40

S.A.M. McNamara^{1,*}, O. Asunta¹, J. Bland¹, P.F. Buxton¹, C. Colgan¹, A. Dnestrovskii¹, M. Gemmell¹, M. Gryaznevich¹, D. Hoffman¹, F. Janky¹, J.B. Lister¹, H.F. Lowe¹, R.S. Mirfayzi¹, G. Naylor¹, V. Nemytov¹, J. Njau¹, T. Pyragius¹, A. Rengle¹, M. Romanelli¹, C. Romero¹, M. Sertoli¹, V. Shevchenko¹, J. Sinha¹, A. Sladkomedova¹, S. Sridhar¹, Y. Takase¹, P. Thomas¹, J. Varje¹, B. Vincent¹, H.V. Willett¹, J. Wood¹, D. Zakhar¹, D.J. Battaglia², S.M. Kaye², L.F. Delgado-Aparicio², R. Maingi², D. Mueller², M. Podesta², E. Delabie³, B. Lomanowski³, O. Marchuk⁴, and the ST40 Team¹

ST40 device ($R_o \sim 40$ cm) Before 2023 during COVID-19

- First plasma in 2018 and 2.3keV achievement of T_i by *Rec.* heating
- 10keV achievement of T_i in 2022
- Profile measurement was not available

From 2023 after MR2023 meeting

- Thomson scattering measurement of
 - T_e and n_e was installed in 2023
- U-Tokyo Doppler tomography restarted the measurement of T_i profile

Thomson Scattering measurement started from 2023 ~ 1keV plasma formation by *Rec.* heating is now confirmed by *TS* ~

Diagnostics collaboration in ST40 (2D Doppler tomography is shipped from U-Tokyo to ST40): 32CH in 2023 \rightarrow 96CH in 2024

Now we can use profile measurement of *T_i*, *T_e* and *n_e* Upgrade of Doppler tomography has been completed
 (32CH → 96CH: 2D imaging of *T_i* is now available in ST40)

First 2D imaging measurement of T_i in ST40

Note: magnetic diagnostics just assumes single-axis and don't trust too much. (Reconnection might be still continuing. We can't use in-situ measurement)

Reconnection heating structure becomes clearer by adjusting the color bar range (700eV \rightarrow 250eV)

At the similar timings, electron heating is also observed ~ 1D 30CH Thomson scattering measurement of T_e and n_e ~

n_e profile shows radial motion at t = 5ms and 6ms

t = 5ms, 6ms, 7ms, 8ms, 9ms

Synchronized measurement with ion Doppler tomography ~ Full pressure profile measurement of ions and electrons has started! ~

Triple-peak *n_e* might be *on-axis* of acceleration path

If T_e measurement is well aligned on-axis, X-point heating would be also clearer

Detection of the MAST-like localized electron heating around the X-point in ST40

After merging, radial compression is also applied to enhance the pressure ~ The M/C electron heating record in MAST has been updated in ST40 ~

The reconnection heating scaling is now upgraded to the full pressure one: $\Delta T_i \propto B_{rec}^2 \propto B_p^2 \rightarrow \Delta U_i \propto B_{rec}^2 \propto B_p^2$

24

Summary and conclusion

The application experiments of reconnection heating for fusion in TS-6 and ST40 have been introduced

Physics Exp.:

- 1. Magnetic reconnection heat ions in the downstream of outflow jet
- 2. <u>MAST-like peaked T_e was reproduced by reconnection heating in ST40</u>
- 3. The heated plasmas are well confined inside the closed flux surface

High field application:

- 1. Rec. heating scenario is successfully connected to semi-steady operation
- 2. <u>Application of reconnection heating is upscaled to the keV range in ST40</u>

3. $\Delta T_i \propto B_{rec}^2$ scaling is upgraded to thermal energy one: $\Delta U_i \propto B_{rec}^2$ (~ 30% of $B_{rec}^2 \rightarrow \Delta U_i$ in ST40) 25

Related talks/posters from our group (Merging Exp.)

Yasushi Ono (16:40 ~ 17:00 Monday):

High power ion heating by magnetic reconnection in two merging toroidal plasmas with high guide field

•<u>Michiaki Inomoto (10:40 ~ 11:00 tomorrow):</u> *Effects of spontaneously-generated and artificially controlled electrostatic fields in high guide-field magnetic reconnection in laboratory experiment*

•<u>S. Takeda (13:00 ~ 17:00 (poster) today/tomorrow):</u> Localized electron acceleration at X-point during magnetic reconnection of two merging tokamak plasmas

Summary and conclusion

The application experiments of reconnection heating for fusion in TS-6 and ST40 have been introduced

Physics Exp.:

- 1. Magnetic reconnection heat ions in the downstream of outflow jet
- 2. <u>MAST-like peaked T_e was reproduced by reconnection heating in ST40</u>
- 3. The heated plasmas are well confined inside the closed flux surface

High field application:

- 1. Rec. heating scenario is successfully connected to semi-steady operation
- 2. Application of reconnection heating is upscaled to the keV range in ST40

3. $\Delta T_i \propto B_{rec}^2$ scaling is upgraded to thermal energy one: $\Delta U_i \propto B_{rec}^2$ (30% of $B_{rec}^2 \rightarrow \Delta U_i$ in ST40) 27