

Study of Electron Acceleration and Ion Acoustic Waves during Low-β Magnetic Reconnection using Laser-Powered Capacitor Coils

Hantao Ji

Department of Astrophysical Sciences, Princeton University Princeton Plasma Physics Laboratory

Acknowledgement: L. Gao, <u>G. Pomraning</u>, K. Sakai (*NIFS*), <u>A. Stanier</u> and F. Guo (*LANL*), Xiaocan Li (*Dartmouth*), A. Milder (*Rochester*), A. Chien, S. Zhang, O. French, K. Hill (*Princeton*); E. Blackman, R. Follet, D. Froula, J. Katz, P. Nilson (*Rochester*); W. Daughton, A. Le, K. Flippo, A. Rasmus (*LANL*); G. Fiksel, S. Klein, C. Kuranz (*Michigan*); C. Li, A. Birkel and R. Petrasso (*MIT*), H. Chen, J. Moody, R. Cauble (*LLNL*); A. Fazzini, J. Fuchs (*LULI*); S. Chen, G. Bleotu (*ELI-NP*); S. Fujioka, R. Takizawa, Y. Sakawa (*ILE*)

The 16th Interrelationship Between Plasma Experiments in the Lab and Space (IPELS)

Munich, Germany, August 5-9, 2024

Outline

- Introduction: what motivates this work?
- Laser-powered capacitor coils* to magnetically drive reconnection at low upstream β (micro-MRX)
 - Electron acceleration directly by reconnection electric field**
 - Ion and electron acoustic bursts driven by electric current***
- Summary**** and future work

*Gao et al., "Ultrafast Proton Radiography of the Magnetic Fields Generated by Laser-Driven Coil Currents", *Phys. Plasmas* **23**, 043106 (2016) *Chien et al., "Study of a magnetically driven reconnection platform using ultrafast proton radiography", *Phys. Plasmas* **26**, 062113 (2019) *Chien et al. "Pulse width dependence of magnetic field generation using laser-powered capacitor coils", *Phys. Plasmas* **28**, 052105 (2021) **Chien et al., "Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma," *Nature Physics* **19**, 254 (2023) ***Zhang et al., "Ion and Electron Acoustic Bursts during Anti-Parallel Reconnection Driving by Lasers," *Nature Physics* **19**, 909 (2023). ****Ji et al., "Study of magnetic reconnection at low-beta using laser-powered capacitor coils", submitted to *Phys. Plasmas* (2024).

Magnetic Reconnection Occurs throughout the Universe and in Fusion Plasmas*

Earth's magnetosphere Pulsar's magnetosphere

- Nearly collisionless* Lundquist number $S \equiv \frac{\mu_0 L V_A}{n} \sim 10^6 - 10^{30}$
- Plasma is large* η effective size $\lambda \equiv \frac{L}{\rho_{\text{sound}}} \sim 10^2 - 10^{14}$
- Occurs impulsively and energetically, often at low upstream β , favoring
 - Particle energization
 - average energy increase $\frac{\Delta E}{E_0} = \frac{1}{\beta} \gg 1$
 - Current-driven micro-instabilities, such as ion acoustic wave(IAW) instability

relative drift
$$\frac{V_{\text{drift}}}{V_{\text{sound}}} = \sqrt{\frac{2}{\beta}} \gg 1$$

*H. Ji & W. Daughton, *Phys. Plasmas* **18**, 111207 (2011) *H. Ji, W. Daughton, J. Jara-Almonte, A. Le, A. Stanier, and J. Yoo, *Nature Rev. Phys.* **4**, 263 (2022)

Various Particle Acceleration Mechanisms by Magnetic Reconnection Have Been Proposed

Ji+ Nat. Rev. Physics 2022

A large body of recent theory and numerical work on this subject (M. Hoshino, S. Zenitani, J. Drake, J. Dahlin, F. Guo, L. Sironi, D. Uzdensky, L. Comisso...)

Energy (a.u.)

Laser-powered Capacitor Coils Provide a Unique Platform to Study Magnetically-driven Reconnection at Low Upstream Plasma β

	RHESSI (solar)	MMS (space)	MRX / FLARE	Laser-Powered Capacitor Coils	
Magnetic Field (B)	0.02 T	20-100 nT	0.02 T / 0.1 T	100 T	
System Size (L)	104 km	104 km	0.4 m / 1.6 m	1 mm	
lon skin depth (d _i)	1-10 m	10 km	0.04 m	few 10 ⁻⁴ m	
Lundquist number	10 ¹³	10 ¹⁴	10 ³ / 10 ⁵	10 ³⁻⁴	
Normalized Size (L/d _i)	106-7	10 ³	10 ¹ / 10 ²	2-20	
Electron MFP ($\lambda_{MFP, e}$)	100 km	10 ⁴⁻⁵ km	5 cm	2-15 mm	
Debye Length (λ_D)	2 mm	2-4 km	1 mm	2-40 µm	
In-situ Detector Size L _{in-situ}		1 m	5 mm		
lon charge, Z	1	1	1	18	-
Electron Temperature T_e	100 eV	100-1000 eV	10 eV	200-400 eV	_
Ion Temperature T_i	100 eV?	100-5000 eV	10 eV	300- 1500 eV	f
Upstream plasma β	0.01	0.04-6	0.1	0.003-0.1	e
Control	No	No	Yes	Yes	
In-situ measurements	No	Yes	Difficult	No	-
Ex-situ measurements	Yes (photon)	No	No	Yes (e,i)	-

$$V_{\rm sound} \equiv \sqrt{\frac{ZT_e + T_i}{M}}$$

- $T_i < ZT_e$ favors IAW

- low upstream β favors particle energization and IAW

- Controllable
- Detecting accelerated particles

Magnetically Driven Reconnection Experiments Performed on a Variety of Laser Facilities at Low- β^*

- Developed on OMEGA, OMEGA-EP, Titan and GEKKO XII facilities since 2015
- ns-long UV lasers used as the main drive

*Chien et al. *Phys. Plasmas* **26**, 062113 (2019) *Chien et al. *Phys. Plasmas* **28**, 052105 (2021) *Zhang et al., *Nature Physics* **19**, 909 (2023).

Our Platform Is Named Micro-MRX*

Micro-MRX

Similar to MRX:

- Magnetically-driven
- Low-β

In contrast to flow-driven and high-β experiments by Nilson, Li, Willingale, Zhong, Raymond, Dong, Fiksel, Kuramitsu, Law, Fox, Ping, Fucks,...

Magnetic Reconnection Experiment (MRX)*

Disadvantageous than MRX:

• No in-situ measurements

Advantageous than MRX:

- *ex-situ* detection of accelerated particles
- Accessibility of different parameter regimes (e.g. $T_i < ZT_e$)

Experiment 1:

Electron Acceleration by Magnetic Reconnection at Low Upstream $oldsymbol{eta}$

A. Chien, L. Gao, S. Zhang, H. Ji, E. Blackman, W. Daughton, A. Stanier, A. Le, F. Guo, R. Follett, H. Chen, G. Fiksel, G. Bleotu, R. Cauble, S. Chen, A. Fazzini, K. Flippo, O. French, D. Froula, J. Fuchs, S. Fujioka, K. Hill, S. Klein, C. Kuranz, P. Nilson, A. Rasmus, R. Takizawa, *Nat. Phys.* **19**, 254-262 (2023).

Angular Dependence of Detected Bumps in Electron Energy Spectra Suggests Reconnection Electric Field Acceleration

Angular Dependance Reproduced by 2D Simulation Using VPIC Code* under Experimentally Relevant Conditions

$$n_e = 10^{18} cm^{-3}$$

 $T_e = T_i = 400 eV$
 $B_0 = 50.7 T$ (for initial current $I_0 = 57$ kA)
 $\beta = 0.063$
 $Z = 18$
 $m_i/m_e = 1.16 * 10^5$

 $t = 1.55 t_{rise}$

$$t_{rise} = 1 ns, \quad \tau = 8.6 ns$$

$$I(t) = \begin{cases} \frac{I_0 t}{t_{rise}} , & t \le t_{rise} \\ I_0 \exp\left(-\frac{t - t_{rise}}{\tau}\right) , & t > t_{rise} \end{cases}$$

Conducting boundary condition for fields Open boundary condition for particles

* Bowers et al. PoP (2008)

reconnection electric field: ~0.6 - 0.7 E_{rec}/V_AB_0 ; $\Delta E = qE_{rec}d \sim 30 \text{ keV}$

Estimated Energy from Direct Acceleration by Reconnection Electric Field Is Within a Factor of 2 of Measurements

Table 1 | Comparisons of maximum electron energy from observation and their estimation

Low-β plasma	Size, L (m)	<i>n</i> e(m⁻³)	B (T)	E _{max,obs} (eV)	E _{max,est} (eV)	Notes or assumptions
Laser plasma (this work)	1×10⁻³	1×10 ²⁴	50	(4–7)×10 ⁴	3×10 ⁴	Cu ⁺¹⁸ plasma
Magnetotail ³	6×10 ⁸	1×10⁵	1×10⁻ ⁸	3×10⁵	4×10 ⁵	In situ measurement
Solar flares ^{54,55}	1×10 ⁷	1×10 ¹⁵	2×10 ⁻²	1×10 ⁸	6×10 ¹⁰	
X-ray binary disk flares ^{56,57}	3×10 ⁴	1×10 ²⁴	1×10 ⁴	5×10 ⁸	1×10 ¹⁴	Cygnus X-3, M=10M _☉ , R=R _s
Crab nebula flares ⁷⁻⁹	1×10 ¹⁷	10 ⁶	1×10 ⁻⁸	5×10 ¹⁵	2.4×10 ¹⁵	Pair plasma

Experiment 2:

Ion and Electron Acoustic Waves during Antiparallel Reconnection at Low Upstream β

S. Zhang, A. Chien, L. Gao, H. Ji, E. Blackman, R. Follett, D. Froula, J. Katz, C. Li, A. Birkel, R. Petrasso, J. Moody, H. Chen, *Nat. Phys.* **19**, 909-916 (2023).

Ion Acoustic-type Waves Considered Important for Localized Anomalous Resistivity for Petschek Model of Fast Reconnection in Large Plasmas

Petschek model (1964)

- However, the current driven IAW rarely observed due to ion Landau damping when $T_i \sim ZT_e$
 - Observed recently by MMS when cold ions exist (Ergun 2016, Steinvall 2021)
- Other plasma waves often observed or proposed, but it is unclear if they are important:
 - Kinetic Alfven waves (Shay+ 2011...)
 - Lower-Hybrid Drift Waves (LHDW, Cater+ 2002, Ji+ 2004, Yoo+ 2020, Graham+ 2022, Yoo+ 2024...)
 - Whistler waves (Goldman+ 2014...)
 - Buneman instability (Che+ 2009...)

Micro-MRX provides unique opportunity to study IAW due to $T_i < ZT_e$ conditions

Experimental Setup

Direct Measurement of IAW and EAW During Reconnection

Large drifting electrons relative to ions are needed to reproduce the asymmetric IAW peaks, and two-stream electrons to reproduce the asymmetric EAW peaks¹⁵

Reconnection with a Cold Background by 2D OSIRIS Code*, reproducing IAW and Double Layers in the Outflow

*Fonseca+, Computational Science – ICCS 2002

• Harris current sheet: balanced magnetic field pressure with thermal pressure

- For IAW to grow: cold background plasma: $T_e = T_i = 1/25 T_{e,harris}$, $n_e = 0.3 n_0$
- Effective dissipation of magnetic energy needs to be further studied.

16

Summary and Future Work

- The micro-MRX platform based on capacitor coils powered by kJ lasers can magnetically drive reconnection at low upstream β , favorable for studies of
 - Particle acceleration due to *ex-situ* detection capabilities
 - Angular distribution of electron energy spectra and the resulting energies, supported by VPIC simulations, show that reconnection electric field acceleration is at work
 - Ion acoustic waves due to high Z ions
 - Burst IAW and EAW have been observed in the reconnection outflow and reproduced in OSIRIS PIC simulations demonstrating the importance of electrostatic double layers
- Current and future research focuses on particle acceleration by different mechanisms (such as Fermi acceleration) and in different regimes, and IAW/EAW in the out-ofreconnection plane direction for possible anomalous resistivity.

Chien et al., *Nature Physics* **19**, 254 (2023). Zhang et al., *Nature Physics* **19**, 909 (2023). Ji et al., submitted to *Phys. Plasmas* (2024).