

Alexander von **HUMBOLDT STIFTUNG**

Kinetic simulations of the ion-acoustic waves observed by the Parker Solar Probe close to the Sun

MAHMOUD SAAD AFIFY

RUHR-UNIVERSITÄT BOCHUM, Germany and BENHA UNIVERSITY, EGYPT

mahmoud.ibrahim@rub.de

ACKNOWLEDGMENTS: MARIA ELENA INNOCENTI, JÜRGEN DREHER, KEVIN SCHOEFFLER, & ALFREDO MICERA

RUHR-UNIVERSITÄT BOCHUM, GERMANY

Kinetic Instabilities Matter!

Credit: Marsch (2006)

• 2D proton velocity distribution function: temperature Anisotropy

Usual suspects include anisotropy instabilities

Credit: Verscharen et al. (2019)

Instabilities driven by temperature anisotropy:

- •ion-cyclotron
- mirror-mode
- •parallel firehose
- •oblique firehose
- These instabilities operate on ion-scales.

In this talk: Only ion core-ion beam drift acoustic instability (electrostatic) considered.

RUHR UNIVERSITÄT BOCHUM

- A coupled pairs of low and high frequencies.
- They are observed as regular bursts.
- Each are narrow band waves.
- They can exist for several hours.
- Associated with higher electron temperature.

Credit: Mozer et al. (2023)

PSP observations of IAWs from 15-25 *Rs*

Mozer et al. arguments in favour of IAWs:

- •The phase difference between the electric field and density fluctuations was 90°.
- •The waves have density fluctuations and no magnetic field component.
- •They have the same phase velocity which is almost equal to the ion acoustic speed.
- •Bursts occur during intervals of enhanced *Te*/*Ti* which is necessary for IA modes.

Credit: Mozer et al. 2022

- •Triggered by a fast ion beam drifting with respect to the core plasma.
- •Warm electrons as background.
- •1D electrostatic instability (e.g. parallel to B_0)

•Here: Ion-ion acoustic instability

• The ion velocity distribution functions captured $\frac{\widehat{\mathbb{S}}}{2}$ at 00:16:49 on January 19, 2021.

IAI Mechanism

Credit: Mozer et al. (2021a)

Note: key parameters $n_b/n_c = 0.025$, $T_e/T_c = 6.5$, and $T_b/T_c = 2.75$

Kinetic Theory: Vlasov-Maxwell-Landau treatment (electrostatic)

$$
k^{2} = \sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{n_{\alpha}} \int \frac{dv}{v - \omega/k} \frac{\partial f_{0,\alpha}}{\partial v} \xrightarrow{\text{In beam}} \frac{\frac{\text{Ion core of the image}}{n_{b}/n_{c}}}{\text{Relative of the image}} \frac{\frac{\text{Ion core of the image}}{\text{Prependic}}}{\text{Prependic of the image}} \frac{\frac{n_{\alpha}}{\text{Prependic}}}{\frac{\text{Open of the image}}{\text{Prependic of the image}}} e^{-(v - V_{\alpha})^{2}/(2v_{th,\alpha}^{2})} \xrightarrow{\frac{T_{e}/T_{c,\parallel}}{T_{b,\parallel}/T_{c,\parallel}}}
$$
\n
$$
= \text{ion core (c) ion beam (b) electrons (e)}
$$

ion core (c), ion beam (b), electrons (e)

• We determine the threshold and growth rates of IAI using the linear kinetic model at different values of n_b/n_c .

-
- •Left: stability/instability regions (same labels as on right).
- PSP observations indicate $T_e/T_c \approx 6.5$ \blacktriangleright .
- Right: dispersion relations for $T_e/T_c = 10$ and $v_D/v_{th,c} = 5$

Kinetic Theory: Results

**RUHR
UNIVERSITÄT BOCHUM**

- saturation phase with small changes.
-
-
-

Vlasov Simulations

Separate phase spaces for all three components (Weak instability)

 0.002 0.001 0.000 -0.001 -0.002 1000 2000 3000 4000 5000 0.002 0.001 0.000 -0.001 -0.002 3000 3050 3100 3150 3200 3250 3300 t $\omega_{p,c}$ $t = 5000 \omega_{p.c}^{-1}$ 0.002 n_{0} 0.000 \mathbf{C} - Core Beam -0.002 --- Electrons 20 40 60 80 100 0.04 - Core --- Beam --- Electrons $\begin{bmatrix} 0 & 0.02 \\ 0 & 0.02 \end{bmatrix}$ 0.00 -0.02 60 20 40 80 100 $X \lambda_{D,c}$

 E_p e $\lambda_{D,c}$ / (m_c $v_{th,c}^2$)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) [MAHMOUD.IBRAHIM@RUB.DE](mailto:mahmoud.ibrahim@rub.de) ¹²

Vlasov simulation with parameters matches with PSP observations

Simulations Simulations

Observations Observations

- •We perform fully kinetic electromagnetic PIC simulation for validation.
- Here parameters: $T_e/T_c = 10$, $T_b/T_c = 1$, $V_D/V_{Th,c} = 5$, $n_b/n_c = 0.05$.
- •Very good agreement between Vlasov simulation, PIC simulations, and linear theory (early phase).
- •Outlook: 2D, magnetic field fluctuations.

Electromagnetic Particle-in-Cell Simulation

Table 1: Parameters used from Graham et al. (2021)

What is the correlation between linear and nonlinear ion acoustic waves (IAWs); i.e. solitary waves, observed in the vicinity to the Sun?

Afify et al. 2024 (Preparation)

Vlasov Simulations

Separate phase spaces for all three components (Solar Orbiter)

- •We do observe ion acoustic instability in a regime compatible with the Mozer observations, but with $T_e/T_c = 10$, rather than $T_e/T_c = 6.5$ as observed.
- •Periodic conditions in x imply creation of chain of islands in beam ion phase space. ion holes, in the frame of the core plasma.
- \bullet Oscillatory signatures in the $\,E_{_X}$ field, as seen in the observations, result from these

-
- •What is the correlation between the low and high-frequency modes? •What is the reason for the triggering and decay of the bursts? \bullet What is the relationship between burst occurrence and temperature ratio T_e/T_c ?

Open questions:

Conclusions

Questions?

