

Alexander von HUMBOLDT STIFTUNG

Kinetic simulations of the ion-acoustic waves observed by the Parker Solar Probe close to the Sun

MAHMOUD SAAD AFIFY

RUHR-UNIVERSITÄT BOCHUM, Germany and BENHA UNIVERSITY, EGYPT

mahmoud.ibrahim@rub.de

ACKNOWLEDGMENTS: MARIA ELENA INNOCENTI, JÜRGEN DREHER, KEVIN SCHOEFFLER, & ALFREDO MICERA

RUHR-UNIVERSITÄT BOCHUM, GERMANY

Kinetic Instabilities Matter!

Credit: Marsch (2006)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

2D proton velocity distribution function: temperature Anisotropy

Usual suspects include anisotropy instabilities

Credit: Verscharen et al. (2019)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

Instabilities driven by temperature anisotropy:

- ion-cyclotron
- mirror-mode
- parallel firehose
- oblique firehose
- These instabilities operate on ion-scales.

In this talk: Only ion core-ion beam drift acoustic instability (electrostatic) considered.

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

RUHR UNIVERSITÄT BOCHUM

PSP observations of IAWs from 15-25 R_{c}

- A coupled pairs of low and high frequencies.
- They are observed as regular bursts.
- Each are narrow band waves.
- They can exist for several hours.
- Associated with higher electron temperature.

Credit: Mozer et al. (2023)

Mozer et al. arguments in favour of IAWs:

- The phase difference between the electric field and density fluctuations was 90° .
- •The waves have density fluctuations and no magnetic field component.
- •They have the same phase velocity which is almost equal to the ion acoustic speed.
- Bursts occur during intervals of enhanced T_{ρ}/T_{i} which is necessary for IA modes.

• Observations of IAWs through two intervals between 21 and 30 solar radii.

Credit: Mozer et al. 2022

IAI Mechanism

•Here: Ion-ion acoustic instability

- Triggered by a fast ion beam drifting with respect to the core plasma.
- Warm electrons as background.
- •1D electrostatic instability (e.g. parallel to B_0)

• The ion velocity distribution functions captured 🗿 at 00:16:49 on January 19, 2021.

Credit: Mozer et al. (2021a)

Kinetic Theory: Vlasov-Maxwell-Landau treatment (electrostatic)

Table 1

$$k^{2} = \sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{n_{\alpha}} \int \frac{dv}{v - \omega/k} \frac{\partial f_{0,\alpha}}{\partial v}$$

Ion core of Ion beam

$$h_{b}/n_{c}$$

Relative of Perpendic
Core anis
Beam ani
Electron to

$$f_{0,\alpha}(v) = \frac{n_{\alpha}}{\sqrt{2\pi}v_{th,\alpha}} e^{-(v - V_{\alpha})^{2}/(2v_{th,\alpha}^{2})}$$

$$\alpha = \text{ ion core (c), ion beam (b), electrons (e)}$$

See: Gary & Omidi (1987)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

1: Observational parameter values as given by Mozer et al. (2021 b) e density (n_c) 1220 cm m density (n_b) 31 cm 0.025 0.025 0.025 e drift between core and beam (V_D) -180 km dicular core temperature $(T_{c,\perp})$ 10 eV dicular beam temperature $(T_{b,\perp})$ 17 eV nisotropy $T_{c,\perp} / T_{c,\parallel}$ 0.8 n n temperature (T_e) 50 eV $T_{c,\parallel} / m_p$ 6.5 2.75 $T_{c,\parallel} / m_p$ 6.63 0.093 o.643 0.093 0.643			
e density (n_c) 1220 cm m density (n_b) 31 cm 0.025 0.025 e drift between core and beam (V_D) -180 km dicular core temperature $(T_{c,\perp})$ 10 eV dicular beam temperature $(T_{b,\perp})$ 17 eV nisotropy $T_{c,\perp} / T_{c,\parallel}$ 1.3 unisotropy $T_{b,\perp} / T_{b,\parallel}$ 0.8 n temperature (T_e) 50 eV $\sqrt{T_{c,\parallel}/m_p}$ 6.5 $\sqrt{T_{c,\parallel}/m_p}$ 6.63 0.093 0.643 dic field 200 n ^T	1: Observational parameter values as given by Mozer et al. $(2021 b)$		
$\begin{array}{c c} \mbox{m density } (n_b) & 31 & \mathrm{cm} \\ \hline 0.025 $	e density (n_c)	1220	$^{\mathrm{cm}}$
$\begin{array}{c c} 0.025\\ \hline 0.025\\ \hline e \ drift \ between \ core \ and \ beam \ (V_D) & -180\\ \ dicular \ core \ temperature \ (T_{c,\perp}) & 10\\ \hline 0 \ eV\\ \hline dicular \ beam \ temperature \ (T_{b,\perp}) & 17\\ \hline 1.3\\ $	m density (n_b)	31	$^{\mathrm{cm}}$
e drift between core and beam (V_D) -180kmdicular core temperature $(T_{c,\perp})$ 10eVdicular beam temperature $(T_{b,\perp})$ 17eVnisotropy $T_{c,\perp} / T_{c,\parallel}$ 1.30.8n temperature (T_e) 50eV $\mathcal{I}_{c,\parallel} / T_{b,\parallel}$ 6.5 $\mathcal{I}_{c,\parallel} / \mathcal{I}_{c,\parallel} / \mathcal{I}_{p,\parallel}$ 6.63 $\mathcal{I}_{c,\parallel} / \mathcal{I}_{p,\parallel}$ 0.93 $\mathcal{I}_{c,\parallel} / \mathcal{I}_{p,\parallel}$ 0.643tic field200		0.025	
dicular core temperature $(T_{c,\perp})$ 10eVdicular beam temperature $(T_{b,\perp})$ 17eVnisotropy $T_{c,\perp} / T_{c,\parallel}$ 1.30.8misotropy $T_{b,\perp} / T_{b,\parallel}$ 0.80.8n temperature (T_e) 50eV $S_{c,\parallel}$ 6.52.75 $\sqrt{T_{c,\parallel}/m_p}$ 6.630.093nic field200n	e drift between core and beam (V_D)	-180	km
dicular beam temperature $(T_{b,\perp})$ 17eVnisotropy $T_{c,\perp} / T_{c,\parallel}$ 1.3unisotropy $T_{b,\perp} / T_{b,\parallel}$ 0.8n temperature (T_e) 50eV $S_{c,\parallel}$ 6.5 $T_{c,\parallel} / m_p$ 6.63 0.093 0.643tic field200n	dicular core temperature $(T_{c,\perp})$	10	e٧
nisotropy $T_{c,\perp} / T_{c,\parallel}$ 1.3 nisotropy $T_{b,\perp} / T_{b,\parallel}$ 0.8 n temperature (T_e) 50 eV $ $ 50 eV $ $ 50 eV $ $ 50 6.5 $T_{c,\parallel} / m_p$ 6.63 0.093 0.643 0.643 200	dicular beam temperature $(T_{b,\perp})$	17	e٧
$\begin{array}{c c} \text{nisotropy } T_{b,\perp} \ / \ T_{b,\parallel} & 0.8 \\ \text{n temperature } (T_e) & 50 & \text{eV} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	hisotropy $T_{c,\perp}$ / $T_{c,\parallel}$	1.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nisotropy $T_{b,\perp}$ / $T_{b,\parallel}$	0.8	
$\ $ 6.5 $T_{c,\parallel}$ 2.75 $\sqrt{T_{c,\parallel}/m_p}$ 6.63 0.093 0.643 tic field 200 n ⁷	n temperature (T_e)	50	e٧
$T_{c,\parallel}$ 2.75 $\sqrt{T_{c,\parallel}/m_p}$ 6.63 0.093 0.643 bic field 200 n ²	,	6.5	
$\sqrt{T_{c,\parallel}/m_p}$ 6.63 0.093 0.643 bic field 200 n ⁷	c, \parallel	2.75	
0.093 0.643 ic field 200 n ⁷	$\sqrt{T_{c,\parallel}/m_p}$	6.63	
tic field 0.643 0.643		0.093	
tic field 200 n ^r .		0.643	
	ic field	200	n'

Note: key parameters $n_b/n_c = 0.025$, $T_e/T_c = 6.5$, and $T_b/T_c = 2.75$

Kinetic Theory: Results

- •Left: stability/instability regions (same labels as on right).
- PSP observations indicate $T_{e}/T_{c} \approx 6.5$ \bigstar .
- Right: dispersion relations for $T_e/T_c = 10$ and $v_D/v_{th,c} = 5 \bigstar$.

• We determine the threshold and growth rates of IAI using the linear kinetic model at different values of n_b/n_c .

Vlasov Simulations

- saturation phase with small changes.
- Left: Weak instability, $t = 1500\omega_{pc}^{-1}$.
- $t = 900\omega_{pc}^{-1}$.

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

RUHR UNIVERSITÄT BOCHUM

Separate phase spaces for all three components (Weak instability)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

Vlasov sim

0.002 -0.001 -0.000 -0.001-0.002 -1000 2000 3000 4000 5000 0.002 0.001 0.000 -0.001-0.002 3000 3050 3100 3150 3200 3250 3300 $t \omega_{p,c}$ $t = 5000 \, \omega_{p,c}^{-1}$ 0.002 n_0 0.000 2 — Core -- Beam -0.002 --- Electrons 20 40 60 80 100 0.04 – Core --- Beam --- Electrons о н 0.00 -0.0260 20 40 80 100 $x \lambda_{D,c}$

 $E_p \ e \ \lambda_{D,c} \ / \ (\ m_c \ v_{th,c}^2 \)$

Observations

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

Simulations

meters matches with PSP observations

Electromagnetic Particle-in-Cell Simulation

- •We perform fully kinetic electromagnetic PIC simulation for validation.
- •Here parameters: $T_e/T_c = 10$, $T_b/T_c = 1$, $V_D/V_{Th,c} = 5$, $n_b/n_c = 0.05$.
- Very good agreement between Vlasov simulation, PIC simulations, and linear theory (early phase).
- •Outlook: 2D, magnetic field fluctuations.

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

What is the correlation between linear and nonlinear ion acoustic waves (IAWs); i.e. solitary waves, observed in the vicinity to the Sun?

Afify et al. 2024 (Preparation)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

Table 1: Parameters used from Graham et al. (2021)

on core density	25	(
on core temperature T_c	2	
on beam density	5	C
on beam temperature T_b	2	
Electron density	30	(
Electron temperature T_e	15	
on beam drift velocity V_b	$4\sqrt{2k_{\rm B}T_b/m_b}$	

Vlasov Simulations

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

Separate phase spaces for all three components (Solar Orbiter)

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

RUHR UNIVERSITÄT BOCHUM

Conclusions

- observations, but with $T_e/T_c = 10$, rather than $T_e/T_c = 6.5$ as observed.
- •Periodic conditions in x imply creation of chain of islands in beam ion phase space.
- ion holes, in the frame of the core plasma.

Open questions:

- •What is the correlation between the low and high-frequency modes? •What is the reason for the triggering and decay of the bursts?

•We do observe ion acoustic instability in a regime compatible with the Mozer

•Oscillatory signatures in the E_{x} field, as seen in the observations, result from these

•What is the relationship between burst occurrence and temperature ratio T_{ρ}/T_{c} ?

M. S. AFIFY | ISSS-15 + IPELS-16 Joint Conference (August 5-9) <u>MAHMOUD.IBRAHIM@RUB.DE</u>

Questions?

