AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma

Radhika Achikanath Chirakkara

Christoph Federrath, Amit Seta

Australian National University

radhika.achikanathchirakkara@anu.edu.au

6 August, 2024

International School/Symposium for Space Simulations (ISSS-15)

Australian

University

National

Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS-16)

Pawsey

Collisionless, magnetized, turbulent astrophysical plasma

Solar wind

Galactic center

Hot gas in clusters emitting X-rays detected by Chandra (pink), optical image from Hubble and inferred dark matter distribution

 $\lambda_{\rm mfp}/L \sim 1$

 $\lambda_{\rm mfp}/L \sim 1$

 $\lambda_{\rm mfp}/L \sim 0.1$

Beyond the Fluid Approach

In weakly-collisional plasma like the hot ICM, $\lambda_{\rm mfp} \sim L$

fluid approximation breaks down (MHD not applicable) → kinetic treatement of the plasma

From: Meyer-Vernet N. Basics of the solar wind. Cambridge University Press; 2007 Jan 18.

WHASH Astrophysical Hybrid Kinetic simulations with flASH

Includes the Boris integrator, predictor-predictor corrector method, constrained transport, wave and particle time-steps, hyper-resistivity, turbulence driving and a new cooling method for ions

Typical length and time scales in the earth's environment

simulations

numerical

Computation cost of

Fluid/MHD approach

8 CPU cores, 16 GB, 12 hrs

Hybrid-kinetic / hybrid particle-in-cell

(8 CPU cores, 16 GB, 12 hrs) x 324!!

Kinetic / particle-incell approach

Innocenti et al. 2017

Charged particle in uniform magnetic field

Waves in collisionless plasma

Linearising the hybrid-kinetic equations (perturbation analysis) → Wave solutions in a collisionless plasma

 $\times 10^{-17}$

0.75

0.50

0.25

0.00 **m**

-0.25

-0.50

-0.75

-1.00

Alfven wave propagating in a computational box

Cold plasma, $T_{\rm i}$ = $T_{\rm e}$ = 0, without resistivity ($\eta = 0$)

A strong uniform magnetic field with initial sinusoidal perturbations

Waves in collisionless plasma

Waves particle interactions (Landau damping)

- Landau damping of ionacoustic waves in collisionless plasma
- Dissipation of wave energy into particle thermal energy in a collisionless plasma
- \circ Full f and δf methods (Kunz et al 2014)

Driving turbulence in hybrid PIC simulations

turbulent driving

ĸ

Turbulent driving field is modelled using the Ornstein-Uhlenbeck process *(Federrath et al. 2010)*

We drive the the turbulence on large scales and inject purely solenoidal driving to the particles

Turbulent driving & heating

Cooling Ions

$$\mathbf{v} \rightarrow \mathbf{v}_{\text{cooled}} = \frac{\sigma_{\text{target}}}{|\sigma_{G \rightarrow P}|} (\mathbf{v}_{\text{th}})_{G \rightarrow P} + (\mathbf{v}_{\text{blk}})_{G \rightarrow P}$$

Precision tests & weak computational scaling

Magnetic Fields in Galaxy Clusters

r [kpc]

shown in contours (Bonafede et al. 2010)

Magnetic Field Amplification in MHD

Magnetic fields can be amplified by the small-scale dynamo – turbulent kinetic energy is converted to magnetic energy

Induction equation

Turbulent dynamo in laser plasma

Collisionless turbulent dynamo simulations

Achikanath Chirakkara et al. 2024

Magnetic field amplification in subsonic and supersonic plasma

Achikanath Chirakkara et al. 2024, In-prep

Conclusions & Future work

• Introducing AHKASH : "Astrophysical Hybrid Kinetic simulations with FLASH"

- Boris integrator, predictor-predictor corrector method, constrained transport, wave and particle time-steps, hyper-resistivity, turbulence driving and a new cooling method for ions
- Understanding magnetic field amplification in collisionless plasma in the context of the Intracluster medium using AHKASH
- Features of plasma turbulence and magnetic field amplification can be different in the subsonic and supersonic regime

Achikanath Chirakkara et al. 2024, MNRAS, Vol. 528, 2024

radhika.achikanathchirakkara@anu.edu.au

arXiv:2401.08499