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Key points

Motivation:
* Can the presence of clouds of charged dust grains interacting with the solar wind
may be responsible for interplanetary field enhancement (IFE)?

* Can a launched, electrostatic fluctuation be used to detect the presence of dust!?

Preliminary laboratory experiments:
* Demonstrated coupling between launched waves and dusty plasma cloud in a
magnetized plasma

* Observed an possible enhancement in electrostatic plasma fluctuations due to the
presence of dust particles
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Evidence for dust-plasma interactions: space and lab
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Solar System Observations:

Interplanetary field enhancements
(IFE) - are anomalous enhancements
of the interplanetary magnetic field

IFEs are correlated with dust impacts
on spacecraft

Possible Mechanism(s) [Jia, 2024]
Relative motion between dust cloud
and solar wind - leads to anomalous

magnetic fields: Pdust = Psolar wind

Colliding magnetic ropes which
generate current sheets

Simulations [Jia, 2024] suggest that both
mechanics could lead to IFE A
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Evidence for dust-plasma interactions: space and lab

Solar System Observations:
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Evidence for dust-plasma interactions: space and lab

Laboratory Observations:

* Presence of dust can local deplete the number of free electrons in a plasma

* Example from a lab experiment looking at self-excited ion fluctuations

PHYSICS OF PLASMAS 17, 043703 (2010) 043703-2 Ratynskaia et al.

Plasma fluctuation spectra as a diagnostic tool for submicron dust
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It 1s shown that the measurements of density fluctuation spectra in dusty plasmas can constitute a o 111l )
basis for in situ diagnostic of invisible submicron dust. The self-consistent kinetic theory that o 7 [L ‘ WIthOUt dUSt
includes the charging processes and the natural density fluctuations of the dust particles predicts pe : |
modifications of the spectra due to the presence of dust. A laboratory experiment was carried out ‘C_D 041 i
where submicron dust was produced in a gas phase and diagnosed by surface analysis of samples I
and by measurements of its influence on the plasma density fluctuation spectra. Quantitative
comparison of the latter with the theory yields information on dust density, size, and distribution in | )
agreement with the results of the surface analysis. The method can be applied to various plasma m L J Attt et e
environments in laboratory and space. © 2010 American Institute of Physics. 0 /——— ‘ ol
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Concept

* Can a pair of spacecraft (e.g., cubists) be used to
transmit an electrostatics / electromagnetic
wave that interacts with dust particles as a
detection mechanism?

* How will the wave be modified by the local
plasma and charged dust!

* What would be an appropriate range of
frequencies!?

* Can laboratory experiments provide insights
that can guide the development of a future
space experiment/mission?
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Properties of dust-containing plasmas: space and lab

plasma

+

° - ion
* Dusty plasmas (complex plasmas) \ o o

— lons o
— Electrons 9
+
— Neutral atoms dust

— Dust particles (hnm to pm)

* Plasma <= dust via charging

electron
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Properties of dust-containing plasmas: space and lab

* Dusty plasmas (complex plasmas)
— lons
— Electrons
— Neutral atoms
— Dust particles (hnm to pm)

* Plasma <= dust via charging

laboratory dusty plasma
(Auburn University)
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Magnetized Plasma Research Laboratory (MPRL)

A Department of Energy Collaborative Facility - Operated via Plasma Science Facility Program
Additional support via the NSF-EPSCoR program - FTPP project
Major equipment funded by the NSF (NSF-MRI), DOE, and NASA
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Magnetized Plasma Research Laboratory (MPRL)

A Department of Energy Collaborative Facility - Operated via Plasma Science Facility Program
Additional support via the NSF-EPSCoR program - FTPP project
Major equipment funded by the NSF (NSF-MRI), DOE, and NASA
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MPRL facilities can provide access to selective scaled space-relevant parameters
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MPRL facilities can provide access to selective scaled space-relevant parameters

Plasma scaling (ions) (Agi/Pion-gyro)
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Operating parameters

* Operating space of MDPX device
compared to normalized fusion edge
plasma and solar wind parameters

* Y-axis: ion Debye length / ion gyro-radius
X-axis: ion mean free path / ion gyro-radius

* Focus is on strongly magnetized regimes -
both electrons and ions are magnetized

3
lon magnetization (Amip/Pion-gyro)
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MDPX: A cryogen-free, superconducting, multi-configuration magnetic field system

* Radial and axial diagnostic access

* RF generated plasmas:
f=1356 MHz,Prr= | to IOW

e Helium, Neon,Argon, Krypton k.
P =5 to 300 mTorr (0.6 to 40 Pa) 1

* Silica microspheres
<dia> =0.] pm to 8 um

o

* Diagnostics:
Langmuir probes
Triple probe (ne, Te,Vp)
DPSS lasers

Ximea cameras (300 fps) Magnetic field: | 3.5T (to date); 4 T (max)
Photron high speed (>100kfps) Magnetic field gradient: | -2T /m
Magnet cryostat: 50cm ID /127 cm OD / 158 cm axial
* Plasma parameters (@ B=0T): Magnet material: NbTi superconductor; cryogen-free

Te=1-5eV, T, = 1/40 eV
Ne~Ni~0.]l to8 x 0> m-3
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MDPX “octagon” chamber - experimental configuration

Setup parameters: ) . top electrode prgbe 2
: L (RF power) (recelve,Vﬂoat)
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Silica particles: | ym (nominal dia.)
Gas: Argon
Pressure: 88.3 mTorr (11.8 Pa)

4-Channel Oscilloscope Lower electrode

Ch I Input to ampliﬁer (E|ectron current)
Ch 2: Transmit (Vpias, Probe |)

Ch 3: Receive (Vficat, Probe 2)
Ch 4: Lower electrode (lsat-elec)

Transmit: 26 Vpp, +43.8V dc offset probe |

(transmit) dust cloud
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Electrode: V = +30V

camera




MDPX “octagon” chamber - experimental configuration

Setup parameters: > tOp electrode prgbe 2
; 4/’ (RF power) (recelve,Vﬂoat)
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Transmit and detect low frequency
potential fluctuations

fion-neutral ~ 6 x 10° Hz

Lower electrode
(Wdust-plasma ~ 220 rad/sec (36 HZ) (Electron current)

7\mfp [ dinter-dust ~ 2

probe |
(transmit)

dust cloud
| W

- * -
R S |

flaunch — IO HZ to ISOO HZ

camera

flaunch / fdust-plasma = 0.28 to 42




Measurement of launched electrostatic fluctuations: plasma and dust

plasma_BO0s512_p89p0_rIS1_Or_lc12_te?79_801pa_dust_f10_files

Methods:

* Use imaging to characterize
plasma and dust fluctuations

(Ref: blue boxes)

* Use probe measurements
to characterize floating

potential and electron
saturation current
fluctuations

* Compute ratio of
fluctuation amplitude with
and without the presence
of dust
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Lower electrode
(Electron current)

probe |
(transmit)

top electrode

4 (RF power)

Effect of dust particles on the propagation of launched waves
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Effect of dust particles on the propagation of launched waves

B=0512T

Measurements
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Effect of dust particles on the propagation of launched waves

Dust-to-Plasma: Electron Fluctuations
Bottom Electrode
e Measurement of ratio of
electron fluctuations: Enhancement of fluctuations?
dust vs. no dust / =
Q
c 3
S : 3
* Normalized to fluctuation S Y, 00 5
levelat B=0T u_‘:,j ,‘\ o =
= N | 4 N
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Next steps: development of new setup for electric field measurements parallel
and perpendicular to the magnetic field

- i

¥

Received Signal vs. Magnetic Field
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MPRL facilities can provide operating conditions that are scaled to geospace parameters

Plasma scaling (ions) (Agi/Pion-gyro)

N
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Expansion of operating regimes

* MDPX:

* Improved pumping to lower operating
pressure (p <5 mTorr)

* Improve electrode design/input power
to increase density (n ~ 1016 m-3).

* ALEXIS:

* Shift operations to helium

e How to introduce dust without full
chamber contamination?

Illl
1

lon magnetization (Amip/Pion-gyro)
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Summary

The presence of dust can modify wave propagation in laboratory, space and
astrophysical plasmas.

* Use the laboratory facilities in the Magnetized Plasma Research Laboratory to
perform scaled space-relevant experiments.

* Experiments show that the introduction of the dust particles (i.e., reduction of

free electrons) may contribute to enhancement of driven, low frequency
electrostatic fluctuations.

* QOutstanding issues:

etjr@auburn.edu

*  Why is there a particular enhancement in the plasma response as magnetic
field approaches B ~ 0.2 T?

* Can we reliably expand the operating regimes of MDPX and other MPRL
devices?

e Need to confirm electric field measurements.
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