

Laboratory study of lunar magnetic reconnection with laser-driven mini-magnetospheres

L. Rovige¹, F. D. Cruz², R. S. Dorst¹, J. J. Pilgram¹, T. Van Hoomissen¹, C. G. Constantin¹, S. Vincena¹, F. Cruz², L. O. Silva², C. Niemann¹, D. B. Schaeffer¹

> ¹ University of California - Los Angeles ² Instituto Superior Técnico, Universidade de Lisboa

IPELS - 16

Mini-magnetospheres form on ion scales

- Defined for standoff distances on the order of the ion inertial length $D=$ L_M d_i \approx 1
- Sensitive to kinetic effects and exhibit a range of behaviors as a function of D
- Can be used to study kinetic scale physics and bridge local and global simulations

Mini-magnetospheres well-suited for study with laboratory experiments

UCLA

Comets/Asteroids

[Image Credit: ESA]

[Nilsson+ Science 2015]

Lunar Regions

[Image Credit: NASA]

[Bamford+ PRL 2012]

Spacecraft Propulsion/Protection

[Image Credit: RAL Space]

[Moritaka+ PoP 2012]

Magnetic reconnection reorganizes the field topology

Solar flares

Planetary magnetospheres

UCLA

[*Image Credit: NASA*]

[*Image Credit: CCFE, JET*]

Magnetic reconnection on the moon?

- Recent evidence of magnetic reconnection on the moon *[Sawyer et al. GRL, 50 (2023)] from THEMIS/ARTEMIS* mission
	- Observed Hall electric field and solar wind electrons on closed magnetic field lines
- Low altitude crossings are extremely rare, lab experiments can help understand the nature of this reconnection

[[]Sawyer et al. , GRL, 50, e2023GL104733 (2023)]

"Dayside" experimental setup on the LAPD

Comparison Moon - LAPD

[Phys. Plasmas. 2011;18(11). doi:10.1063/1.3647505]

Field geometries to model antiparallel reconnection

Fast-gate UV imaging of C4+ ions dynamics

UCLA

B-field compression pushes the null point and drives reconnection

• The field compression pushes the null-point forward: favorable to reconnection

10 Current calculated from Ampere's Law: $J = (\nabla \times \Delta B) / \mu_0$

Hall fields are generated and indicate kinetic-scale reconnection

Generation of out of plane *Bx* in a quadrupole shape & dipolar *Ey* :

Signature of Hall reconnection

[Rovige et al. *The Astrophysical Journal, 969(2), 124. (2024)]*

We measure a reconnection rate of 0.04

We compute the reconnection rate by calculating the annihilated magnetic flux on a centered section one side of the X-line:

PIC Simulations

LPP

-2

 -4

 -6

 -8

 -6

 \cdot 10²

 10^{1}

 10^{0}

 $|2|$

 B_{yz}/B_0

 $\overline{4}$ 5 $\overline{2}$ **Dipole ł** 4 $\overline{0}$.ვ n_e/n_0 $\frac{a}{2}$ -2

V₀

 z/d_i

2

 $\overline{4}$

6

- Dense carbon (Z=+4) driver moving at V_0
- $M_A = 0.5$
- Background hydrogen (Z=+1) plasma immersed in background B field and dipole field
- Mass ratio: $m_i/m_e = 100$
- Standoff distance ~ 1di
- No collisions

UCLA

Simulations carried out by Filipe Cruz from *IST, Lisbon*

PIC Simulations

Evaluating the generalized Ohm's law terms contribution

reconnection:

- No resistive contribution (collisionless)
- No e- inertia effect
- Significant Hall term
- What about electron pressure (kinetic effects) ?

UCLA

PIC simulations modeling the experiment indicate electron-scale reconnection

- Hall term dominates on the d_i scale
- Closer to the Xline: hall term goes to zero and reconnection is driven by the anisotropic pressure tensor (kinetic)
- On this small kinetic scale, electron stop being magnetized: breaking the frozen-in condition

UCLA

Thomson scattering diagnostics

- The Thomson beam can move in a 2in by 2in zone around the reconnection point, and the collection (fiber probe) follows it: enable 2D (2.5D) TS data acquisition!
- Scattered light collected by a fiber array collecting light in a 1mm X 2cm zone and sent to spectrometer
- Caveat: density is very low: needs a lot of shots for one spectrum (200- 500)

Preliminary data shows enhanced heating with dipole

- Data taken at X-point
- Increased heating when dipole is ON: is this due to reconnection?
- Large peaks are neutral carbon lines from C4+ hitting dipole
- Spatially/temporally data acquired: needs analysis

Conclusions & outlook

- We developed a platform to study ion-scale magnetospheres
- This allowed us to gain new insight on the nature of reconnection on the moon
- We observe a significant impact of Hall physics on a global scale, and PIC indicates local, electron-only kinetic effects drive reconnection

Future experiments will:

- Enhance Thomson scattering: measure kinetic effects
- Exploration of nightside reconnection

Thank You!

PIC Simulations

Comparison Moon - LAPD

Phys. Plasmas. 2011;18(11). doi:10.1063/1.3647505

Planetary magnetospheres are highly dynamic and span global to kinetic scales

Key questions remain, including the nature of dayside reconnection and kinetic-scale physics

Previous experiment observed the formation of ion-scale magnetosphere

- Magnetic pressure balances driver ram pressure
- Compression reflected by dipole field

3D PIC Simulations

High-rep. rate enables acquiring field data in 3D

- High rep-rate: we were able to obtain for the first time, volumetric (3D) field data for the B, J and E !
- 36000 laser shots for magnetic and electrostatic field data in a $5x4x4$ cm³ volume

Jz

Outflow associated with Jz but of peak amplitude after the identified reconnection period

