

INSTITUT Asmaphysik

Electrostatic waves and electron holes in PIC simulations of the Earth's bow shock.

Artem Bohdan^{1,2}, Aaron Tran³, Lorenzo Sironi⁴, Lynn Wilson⁵

¹ Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany
 ² Excellence Cluster ORIGINS, Boltzmannstr. 2, DE-85748 Garching, Germany
 ³ University of Wisconsin–Madison Department of Physics, 1150 University Ave, Madison, WI 53706, USA
 ⁴ Columbia University Department of Astronomy, 538 W 120th St. MC 5246, New York, NY 10027, USA
 ⁵ NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, United States

The Earth's Bow Shock

- Nonrelativistic shocks: $v_{sh} \ll c$
- Sonic Mach number: $M_s = v_{sh}/c_s \approx 2-10$
- Alfvén Mach number: $M_A = v_{sh}/v_A \approx 2-10$

PIC simulations vs in-situ measurement: electrostatic waves (Wilson et al. 2021)

PIC simulations

In-situ

Electrostatic waves at/near collisionless shocks (in-situ)

(Wilson et al. 2021)

Wave Name	Polarization or waveform	Frequency ^{α} and/or Appearance	Scale Length ^{β}	Free energy source or wave source
LHW	linear	<i>f_{sc}</i> ~ 5–40 Hz	$k \lambda_{\rm e} \lesssim 1$	currents ^{κ} , density gradients ^{λ} ,
	\perp to \mathbf{B}_o or	$f_{sc} \leq f_{lh}$		Electron heat flux ^{σ} , or
	oblique to \mathbf{B}_o	symmetric modulated		MTSI ^θ
IAW	linear	$f_{\rm sc} \sim 10^2 - 10^4 {\rm Hz}$	$\lambda \ge 2\pi\lambda_{De}$	currents $^{\delta}$,
	∥ to B _o	$f_{rest} \leq f_{pi}$		gyrating/reflected ions ζ , or
		symmetric ⁿ modulated		electron heat flux $^{\xi}$
		sine waves		
ECDI	elliptical or	$f_{sc} \sim 10^2 - 10^4 \text{ Hz}$	$k \lambda_{\rm e} \lesssim 1$	relative drift between
	"Tear-drop"-	$f_{rest} \sim \text{mix}^{\epsilon}$	and	incident electrons and
	shaped	asymmetric ⁿ	$k \lambda_{De} \leq 1$	reflected ions $^{\delta}$
	oblique to \mathbf{B}_{o}	modulated		
		sine waves		
ESW	bipolar pulse	$f_{\rm sc}^{-1}$ ~ few 10 s of ms	$\lambda \geq \lambda_{De}$	electron beams $^{\delta}$ or
	∥ to B ₀	isolated or trains		nonlinear wave decay $^{\delta}$
	else unipolar	of pulses		
LWΨ	linear	$f_{\rm sc} \sim 10-60 \rm kHz$	$k \lambda_{\rm e} \lesssim 1^{\mu}$	electron beams ^{χ}
	to B _o			and/or
	or elliptical	symmetric modulated		nonlinear wave decay $^{\nu}$

Properties of IAW and ESW: $\delta E/E_0 > 50$

 $\lambda_{ESW} \approx 10\lambda_D \approx 0.05\lambda_{se}$

Electrostatic waves at/near collisionless shocks (PIC simulations)

- Buneman waves at the shock foot of quasi-perpendicular high (Shimada & Hoshino, 2000; Hoshino & Shimada, 2002; Amano & Hoshino, 2007, 2009; Bohdan et al., 2017, 2019a, 2019b) and low (Umeda et al., 2009) Mach number shocks.
- Electron Bernstein mode (Muschietti & Lembege, 2006; Yu et al., 2022) can be excited in moderate Mach number perpendicular shocks.
- **Ion-acoustic waves** can be driven by the drift motion of preheated incoming ions relative to the decelerated electrons at the shock foot of high Mach number perpendicular shocks (Kato & Takabe, 2010b, 2010a).
- Electron-acoustic waves can be observed both in the shock foot as a result of the MTSI (Matsukiyo & Scholer, 2006) or in the electron foreshock of obliques shocks (Bohdan et al., 2022; Morris et al., 2022).
- Electrostatic Langmuir waves can be generated via the electron bump-on-tail instability at the foreshock region of oblique high-beta shocks (Kobzar et al., 2021)

Properties of electrostatic waves:

 $\frac{\delta E/E_0}{\lambda_{EW}} \approx \lambda_{se}$

PIC simulations vs in-situ measurement

PIC simulations

 $\delta E/E_0 \approx 1$

 $\lambda_{EW} \approx \lambda_{se}$

In-situ

 $\delta E/E_0 > 50$

 $\lambda_{ESW} \approx 10 \lambda_D \approx 0.05 \lambda_{se}$

PIC simulations vs in-situ measurement

PIC simulations	In-situ
$\delta E/E_0 \approx 1$	$\delta E/E_0 > 50$
$\lambda_{EW} pprox \lambda_{se}$	$\lambda_{ESW} \approx 10 \lambda_D \approx 0.05 \lambda_{se}$

Simple explanation

Very often $\lambda \propto v_{sh}$ (two-stream instability)

Also $\delta E \propto v_{sh}$ (available energy). $E_0 = B_0 v_{sh} \propto v_{sh}^2$ (assuming constant M_A), therefore $\delta E/E_0 \propto v_{sh}^{-1}$

$$\begin{split} v_{sim} &= 0.2c & v_{real} = 0.002c \approx 600 \ km/s \\ \lambda_{EW} &\approx \lambda_{se} & \lambda_{ESW} \approx 0.01 \lambda_{se} \\ \delta E/E_0 &\approx 1 & \delta E/E_0 &\approx 100 \end{split}$$

PIC simulations vs in-situ measurement

PIC simulations	In-situ
$\delta E/E_0 \approx 1$	$\delta E/E_0 > 50$
$\lambda_{EW} pprox \lambda_{se}$	$\lambda_{ESW} pprox 10 \lambda_D pprox 0.05 \lambda_{se}$

Simple explanation

Very often $\lambda \propto v_{sh}$ (two-stream instability) Also $\delta E \propto v_{sh}$ (available energy). $E_0 = B_0 v_{sh} \propto v_{sh}^2$ (assuming constant M_A), therefore $\delta E/E_0 \propto v_{sh}^{-1}$ $v_{sim} = 0.2c$ $\lambda_{EW} \approx \lambda_{se}$ $\delta E/E_0 \approx 1$ $v_{real} = 0.002c \approx 600 \text{ km/s}$ $\lambda_{ESW} \approx 0.01\lambda_{se}$ $\delta E/E_0 \approx 100$

Shock simulations

$$\begin{split} \textbf{M}_{A} = \textbf{1.8}, \textbf{M}_{s} = \textbf{4}, \textbf{\Theta}_{\textbf{Bn}} = \textbf{65}^{\circ} \\ \hline \text{Run} \quad m_{i}/m_{e} \quad v_{sh}/c^{\dagger} \quad v_{0}/c & \text{Width} (d_{i}) \quad \Delta x \; (d_{e}) \quad \omega_{pe}/\Omega_{e} \\ \hline \textbf{A} & 200 & 0.0733 & 0.0338 & 2.90 & 0.143 & 1.76 \\ \textbf{B} & 200 & 0.0518 & 0.0238 & 2.71 & 0.100 & 2.49 \\ \textbf{C} & 200 & 0.0366 & 0.0168 & 2.90 & 0.071 & 3.52 \\ \textbf{D} & 200 & 0.0259 & 0.0119 & 2.71 & 0.050 & 4.99 \\ \textbf{E} & 200 & 0.0183 & 0.0084 & 2.90 & 0.0366 & 7.05 \end{split}$$

Wave parameters scaling

Electrostatic wave power

 $\delta E/E_0 \propto v_{sh}^{-0.5}$

Linear dispersion analysis

Two-stream electrostatic instability

Electron distribution at the shock ramp (run B)

Parameters of the electron distribution

Run	$rac{n_1}{n_2}$	$rac{v_{ m dr}}{v_{ m sh}}$	$rac{v_{ m dr}}{v_{th,1}}$	$rac{v_{ m dr}}{v_{th,2}}$	$v_{ m sh}/c$
Α	1.52	4.14	2.79	2.78	0.0733
В	1.36	4.15	2.88	2.75	0.0518
\mathbf{C}	1.33	4.16	2.96	2.61	0.0366
D	1.28	4.19	2.99	2.45	0.0259
Ε	1.26	4.28	3.02	2.40	0.0183
\mathbf{S}^{\star}	1.35	4.19	2.93	2.59	0.0010

*S – synthetic run, $v_{sh} \approx 312 \ km/s$

Linear dispersion analysis (LDA)

Electron-acoustic waves

Electrostatic waves are identified as electron-acoustic waves driven by two counterstreaming hot electron beams.

> $\lambda_{LDA}/\lambda_{se} \propto v_{sh}$ $\lambda_{LDA}/\lambda_D \propto v_{sh}^0$

But $\lambda_{ES,sh}/\lambda_{LDA} \approx 2$

Periodic-boundary-condition simulations

Setup

Scanned parameters

 $v_{dr}\approx (0.08-0.3)c$

$$\frac{m_i}{m_e} = 200 - 1836$$

 $N_{ppc} = 40 - 2560$

Ion content

$$v_{dr} = 4v_{sh,runA}$$

 $n_{1} = n_{2}$ $N_{ppc} = 2560$ $v_{th,1} = \frac{v_{dr}}{3}$ $v_{th,2} = \frac{v_{dr}}{5}$

Periodic-boundary-condition simulations

Results

- Good match between PBCS and linear dispersion analysis ($\Gamma/\omega_{pe} \approx 0.185$, the prediction is 0.2)
- $Max(\delta E/(B_0c))$ does not depend on v_{sh} , therefore $\delta E/E_0 \propto v_{sh}^{-1}$
- At $\omega_{pe}t > 50$, $\delta E/(B_0c) \propto v_{sh}^{-1}$, therefore $\delta E/E_0 \propto v_{sh}^0$

Periodic-boundary-condition simulations

Results

- 1) The wavelength is consistent with predictions and $\lambda_{ES}/\lambda_{se} \propto v_{sh}$
- 2) The wavelength $\lambda_{ES}/\lambda_{se}$ is decreasing with time
- Structure becomes closer to solitary waves at later stages of EAW development

Conclusions

- Driving conditions for EAWs are independent on the shock velocity.
- The amplitude scales as $\delta E/E_0 \propto v_{sh}^{-0.5}$ or $\delta E/E_0 \propto v_{sh}^{-1}$, therefore $\delta E/E_0$ in real shocks could be larger than **100**.
- The wavelength scales as $\lambda_{ESW}/\lambda_D \propto v_{sh}^0$, therefore $\lambda_{ESW} \approx 40 \lambda_D \approx 300m$.

Physics > Space Physics

[Submitted on 3 Aug 2024]

Electrostatic Waves and Electron Holes in Simulations of Low-Mach Quasi-Perpendicular Shocks

Artem Bohdan, Aaron Tran, Lorenzo Sironi, Lynn B. Wilson III

Thank you

Dr. Artem Bohdan

Max Planck Institute for Plasma Physics Tokamak Theory division Plasma Astrophysics group artem.bohdan@ipp.mpg.de