DUSTING GRAVITATIONAL WAVES OFF SPIDER PULSARS¹ COBWEBS

RENE BRETON

JODRELL BANK CENTRE FOR ASTROPHYSICS THE UNIVERSITY OF MANCHESTER

Colin Clark, Vik Dhillon, Marten van Kerkwijk, Mark Kennedy, Tom Marsh, Daniel Mata, **Lars Nieder**, **Prajwal Padmanabh**, Mallory Roberts, Guillaume Voisin, and more...

And PhD students / team: Elliott Polzin, James Stringer, Tinn Thongmeearkom, Adipol Phosrisom, Oli Dodge, Pengyue Sun, Soheb Mandhai, John Paice

TRAPUM Collaboration

Artwork from Soheb Mandhai

Large spin-down luminosity ($E_{dot} = \text{few } 10^{34} \text{ erg/s}$)

Highly irradiated, evaporating companion

Millisecond Pulsars (25 ms)

Low-mass companion

- Black Widows (~0.02 M_☉)
- Redbacks (~0.2-0.5 M_☉)

Short orbits

(75 minutes - day) •

Artwork from Soheb Mandhai

ACROSS THE EM SPECTRUM

ACROSS THE EM SPECTRUM

ACROSS THE EM SPECTRUM

TRANSITIONAL MSPS

Canonical MSP evolution

TRANSITIONAL MSPS

tMSP evolution

Three 'spiders' known to transition between 'LMXB' and 'pulsar' states Transitions within ~week(s)

- ▶ PSR J1023+0038 (Archibald et al. 2009, Stappers et. 2013)
- ▶ IGR J1824-24525 / M28I (Papitto et al. 2013)
- ▶ XSS J12270-4859 (Bassa et al. 2014)

GW ENTANGLED INTO SPIDER WEBS

Five reasons why Spiders are important for GW

- 1. Fastest spinning NS
- 2. Tightest orbits
- 3. Heavy NS
- 4. Have accreted mass
- 5. Failed systems might merge

TRAPUM FERMI SURVEYS

Shallow survey

- ▶ 2x 10min L-band
- ▶ 2x 10min UHF
- Fields selected based on gamma-ray properties

- ▶ 2x 60min L-band
- ▶ 2x 60min UHF
- Fields selected for having likely optical from spider companion

MEERKAT POWER

MeerKAT is an interferometer:

- Small dishes => large FoV
- Tied-array beams tiling
 - ▶ 480 coherent beams (tuneable)
 - RFI robustness
 - ▶ RFI mitigation
 - Localisation

[See Prajwal Padmanabh's talk]

Parameter	Parkes	GBT	Arecibo	MeerKAT
Frequency (MHz)	1390	820	327	1284 / 816
FoV @ survey (arcmin)	11	12	11	53 (0.09 for TAB)

Credit: T. Thongmeearkom & T. Bezuidenhout

Coverage of entire r_{95%} region for several Fermi UNIDs in a single pointing. Instantaneous localisation using detection in multiple beams.

SURVEY RESULTS AT A GLANCE

Shallow survey (in progress)

- 160 fields surveyed
- ▶ 40 new pulsars
 - ▶ 5 slow pulsars
 - ▶ 35 MSPs
 - 12 spider binaries

Deep survey (in progress)

- ▶ 10 fields surveyed
- 4 new spider (redback) binaries

TRAPUM Collaboration

Phase 1 L band (Clark et al. 2023) Phase 1 Deep survey (Thongmeearkom et al. 2024) Phase 1 UHF (Thongmeearkom et al. in prep)

Phase 1 Timing (Burgay et al. in prep)

Phase 2 (Thongmeearkom et al. in prep)

Multi-EM follow-up (Belmonte Diaz, Thongmeearkom, Phosrisom et al in prep) Optical follow-up (Dodge et al. 2024) Optical follow-up (Dodge et al. in prep) Optical follow-up (Phosrisom et al. in prep)

C(G)W FROM J1526-2744

Pulsar + WD companion in circular orbit f = 401 Hz $df/dt = -5x10^{-16} \text{ Hz} / \text{ s}$ $P_{orb} = 0.2 \text{ d}$ $M_{c,min} = 0.083 \text{ M}_{sun}$ $D_{DM} = 1.3 \text{ kpc}$

Coherent search for C(G)W in aLIGO O1, O2 and O3 using pulsar ephemeris at ▶ f = 802 Hz ▶ df/dt = -1x10⁻¹⁵ Hz / s

No expected detection as aLIGO
h ~ 2 dE/dt
h_{95%} < 1.25 x 10⁻²⁶
ε < 2.45 x 10⁻⁸

Clark et al. (2023), also Ashok et al. (2024)

PINNING DOWN THE RIGHT SURVEY STRATEGY

Thongmeearkom et al. (in prep)

A FAILED TRANSITIONAL MSP?

PSR J1803-6707

- 2.14 ms redback in 9.1 hr orbit
- ULTRACAM observations June and July 2021
 Modelling requires change in T_{irr} and R_{comp}

[See Adipol Phosrisom's talk]

PSR J1803-6707 May 202 June 202 uly 2021 140(May 2021 . (June 2021 . (July 2021) . (May 2021 (June 2021 120 q_s (July 2021) u_s (May 2021) u. (June 2021 u_s (July 2021) 100 Orbital phase Orbital phase Phosrisom et al. (in prep)

Failed tMSP?

Known tMSP have a comparable Roche lobe filling factor in quiescence

Phosrisom et al. (in prep)

DRAMATIC RADIO ECLIPSES

LUDICROUS RADIO ECLIPSES

Thongmeearkom et al. (2024)

GAMMA RAY TIMING

Fermi gamma ray timing provides immediate 15 year baseline

Spiders binaries display large, stochastic orbital variability

[See Lars Nieder's talk]

Thongmeearkom et al. (2024)

PROSPECTS FOR GW

Ultrashort period systems might be detectable as CW Some failed systems might merge

Conrad-Burton et al. 2023

NEXT STEP: SPIDER POPULATION

- Self-consistent binary population synthesis tracking
 - Stellar mass distribution
 - Binary population mixture
 - Orbital dynamics
 - New binary evolution ingredients
- How many spiders?
- Where are they located?
- How many mergers?

[See Soheb Mandhai's talk]

SUMMARY

- Known spider population is booming
 - Heaviest, fastest spinning pulsars
 - Major selection biases against radio
 - Multi-wavelength now key ingredient
- Multi-wavelength follow-up key
 - Unravelling population
 - Providing timing and physical parameters

Credit: Knispel/Clark/Max Planck Institute for Cravitational Physics/NASA