"The Hough Transform Search for Continuous Gravitational Waves": 20 Years Later

Badri Krishnan (on behalf of A.Sintes, M.A.Papa, B.F.Schutz, S.Frasca, C.Palomba)

PHYSICAL REVIEW D, VOLUME 70, 082001

Hough transform search for continuous gravitational waves

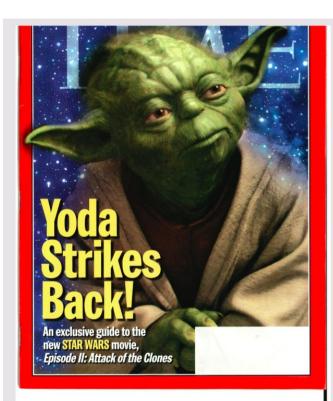
Badri Krishnan,^{1,*} Alicia M. Sintes,^{1,2,†} Maria Alessandra Papa,^{1,‡} Bernard F. Schutz,^{1,3,§} Sergio Frasca,^{4,5,∥} and Cristiano Palomba^{5,¶}

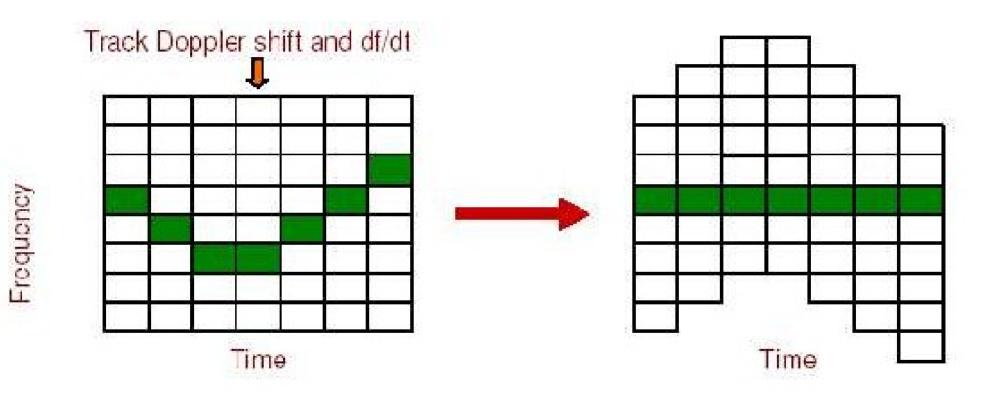
¹Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany ²Departament de Física, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, E-07122 Palma de Mallorca, Spain ³Cardiff University, Cardiff, CF2 3YB, United Kingdom ⁴Dip. di Fisica, Università di Roma "La Sapienza", P.le A. Moro 2, I-00185 Rome, Italy ⁵INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Rome, Italy (Received 5 July 2004; published 6 October 2004)

This paper describes an incoherent method to search for continuous gravitational waves based on the *Hough transform*, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities.

DOI: 10.1103/PhysRevD.70.082001

PACS numbers: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym





- August 2002: I started my postdoc in MAP's group at AEI Potsdam
- Stimulating atmosphere at AEI Potsdam with diverse research groups – Ed Seidel was the other group leader in Bernard's department (Ehlers and Nicolai were the other directors)
- Struggles with "LALDemod" during the winter → this later became ComputeFStatistic (Reinhard joined MAP's group in 2003)
- MAP decides to send me off to Palma in early 2003 to learn about the Hough transform from Alicia

- The LIGO Detectors had started collecting data
- S1: 17 Days starting from August 23– September 09, 2002
- The CW group was led by MAP and Mike Landry
- The first published observational result was a targeted search for PSR J1939+2134 (using both LIGO and GEO data) arXiv submission on August 14, 2003 (the first BNS result came a week later)
- This used both the F-statistic and a time domain Bayesian method
- It was clear that we need other methods for large parameter space searches

- The data analysis methods, software and also the collaboration were being formed
- Recall: even SFTs were not accepted as a standard data format at that time, and LDAS was supposed to be the platform for searches
- Our CW software was primarily hosted on a CVS at AEI Potsdam, LAL was being developed, and Jolien was the librarian for the pulgroup repository
- The Hough Transform was one of the semi-coherent CW methods under development (along with PowerFlux and StackSlide)

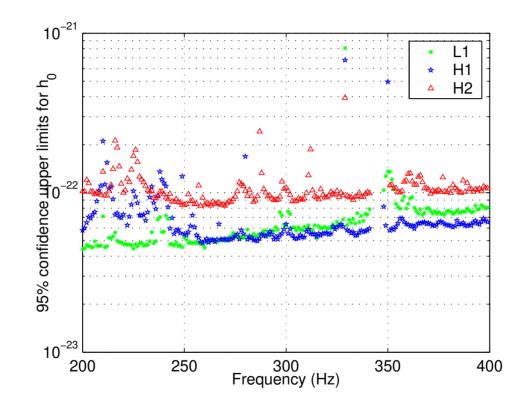
Development of the Hough analysis

- The Hough Transform was one of these methods -- led by MAP and Alicia
- Builds on previous work in Rome (see talk by Sergio Frasca)
- The basic routines/functions for the Hough transform were available (along with Alicia's very extensive notes and diagrams!)
- My task: Put together these functions into a search pipeline, understand the statistics and thresholds, and apply it to S2 data (and write a methods paper)
- First trip to Palma in 2003 was very important for this project

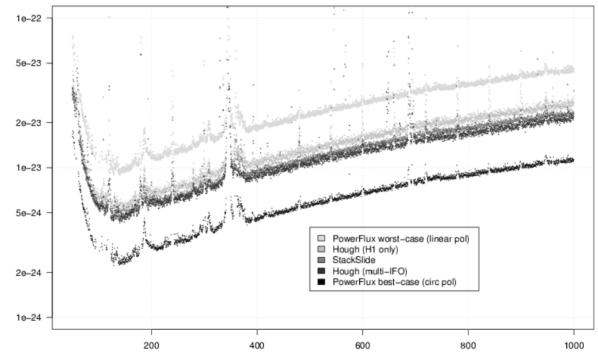
The First LIGO Results using Hough – S2 and S4

PHYSICAL REVIEW D 72, 102004 (2005)

First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform

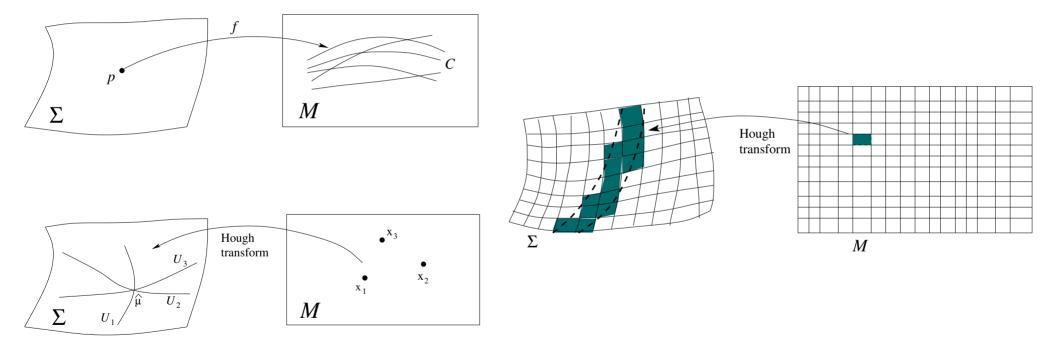

B. Abbott, ¹² R. Abbott, ¹⁵ R. Adhikari, ¹² A. Ageev, ^{20,27} J. Agresti, ¹² B. Allen, ³⁹ J. Allen, ¹³ R. Amin, ¹⁶ S. B. Anderson, ¹² W. G. Anderson, ²⁹ M. Araya, ¹² H. Armandula, ¹² M. Ashley, ²⁸ F. Asiri, ^{12,a} P. Aufmuth, ³¹ C. Aulbert, ¹ S. Babak, ⁷ R. Balasubramanian, ⁷ S. Ballmer, ¹³ B. C. Barish, ¹² C. Barker, ¹⁴ D. Barker, ¹⁴ M. Barnes, ^{12,b} B. Barr, ³⁵ M. A. Barton, ¹² K. Bayer, ¹³ R. Beausoleil, ^{26,c} K. Belczynski, ²³ R. Bennett, ^{35,d} S. J. Berukoff, ^{1,e} J. Betzwieser, ¹³ B. Bhawal, ¹² I. A. Bilenko, ²⁰ G. Billingsley, ¹² E. Black, ¹² K. Blackburn, ¹² L. Blackburn, ¹³ B. Bland, ¹⁴ B. Bochner, ^{13,f} L. Bogue, ¹⁵ R. Bork, ¹² S. Bose, ⁴¹ P. R. Brady, ³⁹ V. B. Braginsky, ²⁰ J. E. Brau, ³⁷ D. A. Brown, ¹² A. Bullington, ²⁶ A. Bunkowski, ^{2,31} A. Buonanno, ^{6,g} R. Burgess, ¹³ D. Busby, ¹² W. E. Butler, ³⁸ R. L. Byer, ²⁶ L. Cadonati, ¹³ G. Cagnoli, ³⁵ J. B. Camp, ²¹ J. Cannizzo, ²¹ K. Cannon, ³⁹ C. A. Cantley, ³⁵ L. Cardenas, ¹² K. Carter, ¹⁵ M. M. Casey, ³⁵ J. Castiglione, ³⁴ A. Chandler, ¹² J. Chapsky, ^{12,b} P. Charlton, ^{12,h} S. Chatterji, ¹² S. Chelkowski, ^{2,31} Y. Chen, ¹ V. Chickarmane, ^{16,i} D. Chin, ³⁶ N. Christensen, ⁸ D. Churches, ⁷ T. Cokelaer, ⁷ C. Colacino, ³³ R. Coldwell, ³⁴ M. Coles, ^{15,j} D. Cook, ¹⁴ T. Corbitt, ¹³ D. Coyne, ¹² J. D. E. Creighton, ³⁰ T. D. Creighton, ¹² D. R. M. Crooks, ³⁵ P. Csatorday, ¹³ B.J. Cusack, ³ C. Cutler, ¹ J. Dalrymple, ²⁷ E. D'Ambrosio, ¹² K. Danzmann, ^{31,2} G. Davies, ⁷ E. Daw, ^{16,k} D. DeBra, ²⁶ T. Delker, ^{34,1} V. Dergachev, ³⁶ S. Desai, ²⁸ R. DeSalvo, ¹² S. Dhurandhar, ¹¹ A. Di Credico, ²⁷ M. Díaz, ²⁹ H. Ding, ¹² R. W. P. Drever, ⁴ R. J. Dupuis, ¹² J. A. Edlund, ^{12,b} P. Ehrens, ¹² E. J. Elliffe, ³⁵ T. Etzel, ¹² M. Evans, ¹² T. Evans, ¹⁵ S. Fairhurst, ³⁹ C. Fallnich, ³¹ D. Farnham, ¹² M. M. Fejer, ²⁶ T. Findley, ²⁵ M. Fine, ¹² L. S. Finn, ²⁸

PHYSICAL REVIEW D 77, 022001 (2008)


All-sky search for periodic gravitational waves in LIGO S4 data

B. Abbott, ¹⁵ R. Abbott, ¹⁵ R. Adhikari, ¹⁵ J. Agresti, ¹⁵ P. Ajith,² B. Allen,²⁵⁰ R. Amin, ¹⁹ S. B. Anderson, ¹⁵
W. G. Anderson, ⁵⁰ M. Arain, ³⁹ M. Araya, ¹⁵ H. Armandula, ¹⁵ M. Ashley, ⁴ S. Aston, ³⁸ P. Aufmuth, ¹⁴ C. Aulbert, ¹ S. Babak, ¹
S. Ballmer, ¹⁵ H. Bantilan, ⁸ B. C. Barish, ¹⁵ C. Barker, ¹⁶ D. Barker, ¹⁶ B. Barr, ⁴⁰ P. Barriga, ⁴⁹ M. A. Barton, ⁴⁰ K. Bayer, ¹⁸
K. Belczynski, ²⁵ J. Betzwieser, ¹⁸ P. T. Beyersdorf, ²⁸ B. Bhawal, ¹⁵ I. A. Bilenko, ²² G. Billingsley, ¹⁵ R. Biswas, ⁵⁰
E. Black, ¹⁵ K. Blackburn, ¹⁵ L. Blackburn, ¹⁸ D. Blair, ⁴⁹ B. Bland, ¹⁶ J. Bogenstahl, ⁴⁰ L. Bogue, ¹⁷ R. Bork, ¹⁵ V. Boschi, ¹⁵
S. Bose, ⁵¹ P. R. Brady, ⁵⁰ V. B. Braginsky, ²² J. E. Brau, ⁴³ M. Brinkmann, ² A. Brooks, ³⁷ D. A. Brown, ^{15,6} A. Bullington, ³¹
A. Bunkowski, ² A. Buonanno, ⁴¹ O. Burmeister, ² D. Busby, ¹⁵ R. L. Byer, ³¹ L. Cadonati, ¹⁸ G. Cagnoli, ⁴⁰ J. B. Camp, ²³
J. Cannizzo, ²³ K. Cannon, ⁵⁰ C. A. Cantley, ⁴⁰ J. Cao, ¹⁸ L. Cardenas, ¹⁵ M. M. Casey, ⁴⁰ G. Castaldi, ⁴⁶ C. Cepeda, ¹⁵
E. Chalkley, ⁴⁰ P. Charlton, ⁹ S. Chatterji, ¹⁵ S. Chelkowski, ² Y. Chen, ¹ F. Chiadini, ⁴⁵ D. Chin, ⁴² E. Chin, ⁴⁹ J. Cook, ¹⁶
T. Corbitt, ¹⁸ D. Coward, ⁴⁹ D. Coyne, ¹⁵ J. D. E. Creighton, ⁵⁰ T. D. Creighton, ¹⁵ R. P. Croce, ⁴⁶ D. R. M. Crooks, ⁴⁰

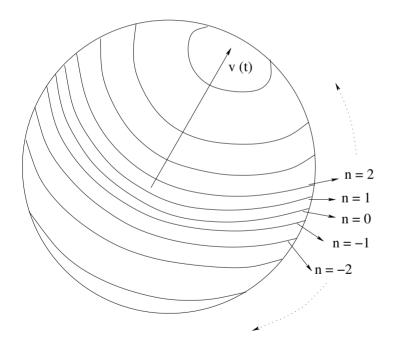
The S2 Upper Limits

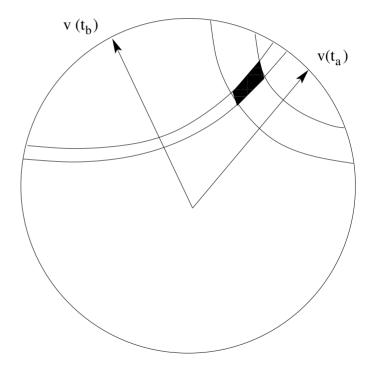

The S4 Upper Limits

Frequency (Hz)

The Hough Methods Paper

• Start with a geometrical formulation of the method

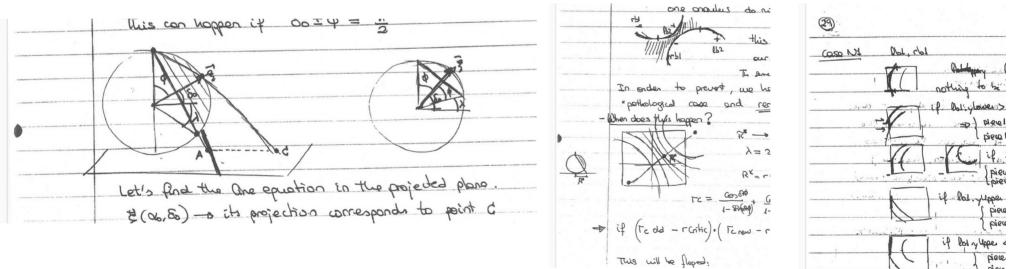



The Hough Methods Paper

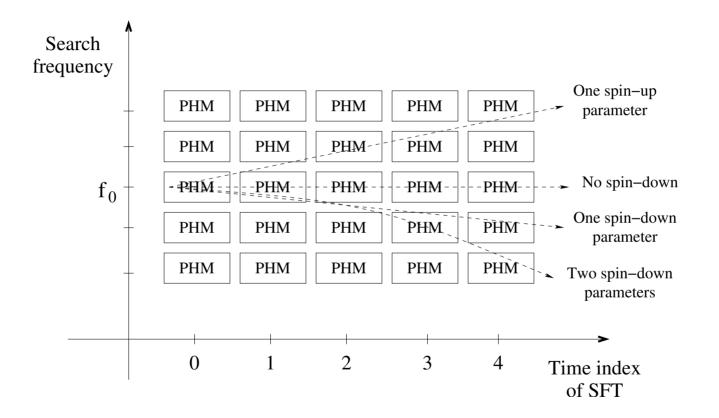
- Two flavors of the Hough transform Non-Demodulated and demodulated
- Non-demodulated: get peaks from SFT power
- Demodulated: get peaks from F-statistic

Circles in the sky

• The demodulated case – we get "circles in the sky"

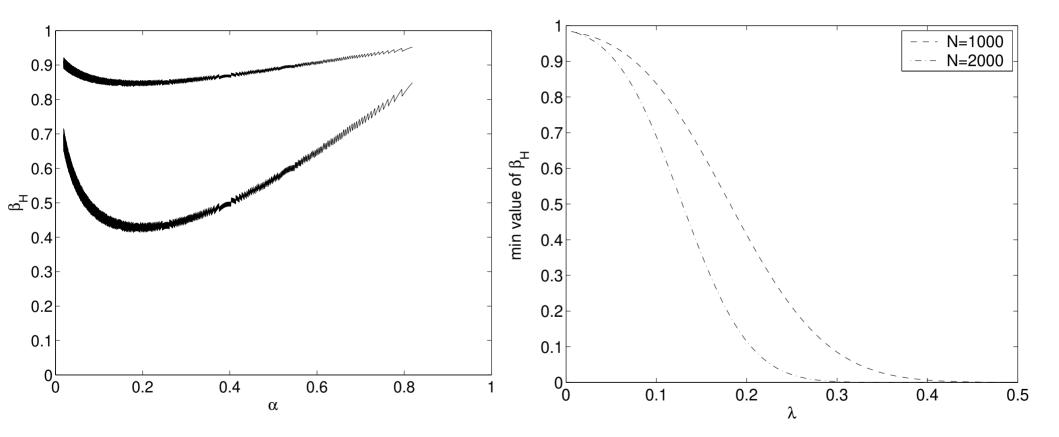


The Hough Methods Paper


- Heuristic estimates of some important quantities:
- SFT duration
- Width of annuli in sky
- Sky resolution (intersection of annuli)
- Spindown resolution

The (in)famous look-up-tables

- The annuli can be re-used for several frequencies
- Needs a careful construction of the annuli (in the stereographic plane) – Alicia's notes!


The (in)famous look-up-tables

Thresholds and sensitivity estimates

- There are two thresholds in the problem: for selecting peaks and for final number count
- Two methods: using either the Neyman-Pearson criterion, or miminizing the "critical ratio" (i.e. expected mean/standard deviation)
- Sensitivity estimates were the most detailed calculations in the paper used and compared several approximations
- The final sensitivity estimate when averaging over sources was in fact biased (fixed by Dreissigacker, Prix & Wette, 2018)

Thresholds and sensitivity estimates

Thresholds and sensitivity estimates

- Leads to estimate of smallest signal that can be detected
- For FA 1% and FD 10%

$$\lambda \approx \frac{S}{\rho_{\rm th}^{\star}} \sqrt{\frac{8(1-\alpha^{\star})}{N\alpha^{\star}}} \approx \frac{9.02}{\sqrt{N}}$$

where

$$S := \operatorname{erfc}^{-1}(2\alpha_H^{\star}) + \operatorname{erfc}^{-1}(2\beta_H^{\star})$$

Leads to final sensitivity estimate after averaging over sources

$$h_0 = \frac{8.54}{N^{1/4}} \sqrt{\frac{S_n}{T_{\rm coh}}} = 8.54 N^{1/4} \sqrt{\frac{S_n}{T_{\rm obs}}}.$$

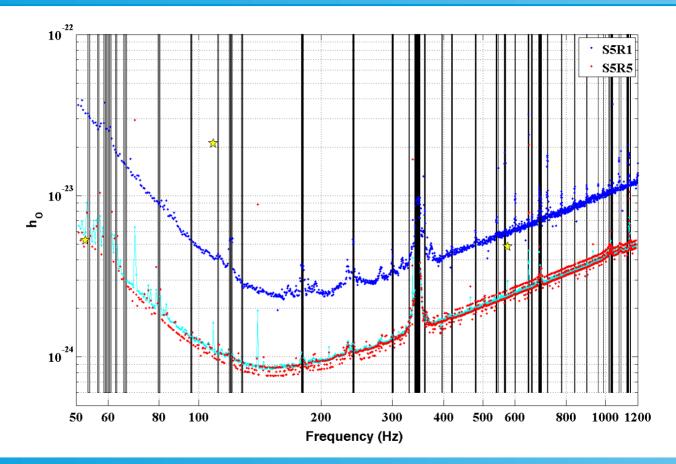
Further development: using weights

- The Hough method is inherently less sensitive than PowerFlux because of thresholding on SFT power
- It should be more robust, but we do need to improve sensitivity for quiet frequencies
- Weighing scheme motivated by Power Flux and Vladimir Dergachev (very important to compete with smart people!) -- used in S4 analysis
- Code written for dealing with multiple detectors with important input from Reinhard (very important to work with smart people!)

Hough with "demodulated" data

- The notion of "demodulation" in the paper likely predates the Fstatistic
- It provides heuristic estimates and the statistics of the hough maps for this case – several new features arise but we again have annuli in the sky (see also Prix & Itoh, 2005)
- Applied to S5 data using Einstein@Home -- was in fact the first implementation of a semi-coherent search using the F-statistic
- Segments can now be arbitrarily long needs a further optimization for a multi-stage hierarchical search (Cutler, Gholami & Krishnan, 2005) (Prix & Shaltev 2012)

Hough with "demodulated" data


PHYSICAL REVIEW D 87, 042001 (2013)

Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

J. Aasi,¹ J. Abadie,¹ B. P. Abbott,¹ R. Abbott,¹ T. D. Abbott,² M. Abernathy,³ T. Accadia,⁴ F. Acernese,^{5a,5c} C. Adams,⁶ T. Adams,⁷ P. Addesso,⁸ R. Adhikari,¹ C. Affeldt,^{9,10} M. Agathos,^{11a} K. Agatsuma,¹² P. Ajith,¹ B. Allen,^{9,10,13} A. Allocca,^{14a,14c} E. Amador Ceron,¹³ D. Amariutei,¹⁵ S. B. Anderson,¹ W. G. Anderson,¹³ K. Arai,¹ M. C. Araya,¹ S. Ast,^{9,10} S. M. Aston,⁶ P. Astone,^{16a} D. Atkinson,¹⁷ P. Aufmuth,^{9,10} C. Aulbert,^{9,10} B. E. Avlott,¹⁸ S. Babak,¹⁹ P. Baker,²⁰

- First time coincidences between coherent segments was done on the host machines of Einstein@Home
- Precursor to GCT (Pletsch & Allen, 2009) and Weave (Wette, Walsh, Prix & Papa, 2018)
- Data from Jan Oct 2009, 121 coherent segments of 25 hours

The S5 "Hierarchical Search" Upper Limits

06/17/2024

Conclusions

- The development of the Hough transform method is part of the general problem of wide parameter space CW searches
- The Hough methods paper aimed to provide a general description of the method, optimal thresholds, and sensitivity estimates
- Used in observational results with S2, S4 and S5 Data
- These include the first semi-coherent search using the F-statistic
- Recent developments include the frequency-Hough version (see Sergio's talk)