High priority targets for transient continuous waves from glitching pulsars

Garvin Yim

Kavli Institute for Astronomy and Astrophysics, Peking University

CWs Workshop, AEI, 16th June 2024 *g.yim@pku.edu.cn* Yim, Shao & Xu (submitted), [arXiv: 2406.00283](https://arxiv.org/abs/2406.00283)

Contents

1

Motivation: O4 run is underway

Not yet observed a continuous gravitational wave (CW) signal

Compare different pulsar glitch models Create a list of high priority targets Objectives:

Garvin Yim **High priority transient continuous gravitational wave targets**

Part I - Energy budgets from pulsar glitches Part II - Gravitational wave signal analysis Part III - Results Part IV - Summary

Part I - Energy budgets from pulsar glitches

The manufacturer of the state of

Transient continuous waves

Garvin Yim High priority transient continuous gravitational wave targets

$\text{Duration} = \mathcal{O}(\text{Minutes})$ Duration \gg Observation time

Duration

Transient continuous waves

Duration

Transient Continuous Waves

Garvin Yim **High priority transient continuous gravitational wave targets**

 $h(t) = \varpi(t; t_0, T_{GW})h_{CW}(t)$

$\mathcal{O}(\text{Minutes}) < \text{Duration} < \mathcal{O}(\text{Monthly})$

$\mathbf{Duration} = \mathcal{O}(\text{Minutes})$ Duration $\gg \text{Observation time}$

"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

"Glitch rise" models

"Postglitch" models Model 3: Transient mountain Model 4: Ekman pumping

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

"Glitch rise" models

Credit: Espinoza et al. (2011)

"Postglitch" models Model 3: Transient mountain Model 4: Ekman pumping

Glitch models attempt to explain the spin-up. Postglitch models are agnostic to what causes the spin-up.

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

Credit: Espinoza et al. (2011)

"Postglitch" models Model 3: Transient mountain Model 4: Ekman

pumping

+2 "naïve" models, one each for oneand two- component neutron stars

"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

Garvin Yim High priority transient continuous gravitational wave targets

Glitch models attempt to explain the spin-up. Postglitch models are agnostic to what causes the spin-up.

Concerned mostly about the energy available for GW emission, E_{GW}

Garvin Yim **High priority transient continuous gravitational wave targets**

Credit: Espinoza et al. (2011)

"Postglitch" models Model 3: Transient mountain Model 4: Ekman

pumping

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

+2 "naïve" models, one each for oneand two- component neutron stars

"Glitch rise" models

Glitch models attempt to explain the spin-up. Postglitch models are agnostic to what causes the spin-up.

Summary: Reduction in Δ*I* leads to an increase in ΔΩ since Δ*J* = 0

Garvin Yim High priority transient continuous gravitational wave targets 4/23

Model 1: Starquake (one component) model

[Sidery et al. 2010, LSC 2011]

One component in the sense that the angular momentum and rotational

Summary: Reduction in Δ*I* leads to an increase in ΔΩ since Δ*J* = 0

Model 1: Starquake (one component) model [Sidery et al. 2010, LSC 2011]

kinetic energy can be written as: $J = IΩ$ and $E_{rot} = IΩ²/2$

- One component in the sense that the angular momentum and rotational kinetic energy can be written as: $J = I\Omega$ and $J = I\Omega$ and $E_{rot} = I\Omega^2/2$
- Imagine a sudden decrease in the moment of inertia ΔI , i.e. a starquake.
- We must conserve angular momentum so Δ*J* ≈ (Δ*I*)Ω + *I*ΔΩ = 0
	- This causes the energy to change: Δ*Erot* = 1 2 $(I + \Delta I)(\Omega + \Delta \Omega)^2 - \frac{1}{2}$ 2 *I*Ω²

Garvin Yim **High priority transient continuous gravitational wave targets**

Summary: Reduction in Δ*I* leads to an increase in ΔΩ since Δ*J* = 0

Model 1: Starquake (one component) model [Sidery et al. 2010, LSC 2011]

- One component in the sense that the angular momentum and rotational kinetic energy can be written as: $J = I\Omega$ and $J = I\Omega$ and $E_{rot} = I\Omega^2/2$
- Imagine a sudden decrease in the moment of inertia ΔI , i.e. a starquake.
- We must conserve angular momentum so Δ*J* ≈ (Δ*I*)Ω + *I*ΔΩ = 0
	- This causes the energy to change: Δ*Erot* =

Assuming $E_{GW} = \Delta E_{rot}$ this means: $E_{GW} =$

Garvin Yim High priority transient continuous gravitational wave targets

$$
E_{rot} = \frac{1}{2}(I + \Delta I)(\Omega + \Delta \Omega)^2 - \frac{1}{2}I\Omega^2
$$

$$
\vdots
$$
 $E_{GW} = \frac{1}{2}I\Omega\Delta\Omega$

Summary: Reduction in Δ*I* leads to an increase in ΔΩ since Δ*J* = 0

Model 1: Starquake (one component) model [Sidery et al. 2010, LSC 2011]

Model 2: Vortex unpinning (two component) model

[Sidery et al. 2010, LSC 2011, Prix et al. 2011]

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

Two component model: superfluid (s) and crust+everything else coupled to it (c)

 $I_s \Omega_s^2$ +

Ω*s*

1

2

 $J = I_s \Omega_s + I_c \Omega_c$

Garvin Yim High priority transient continuous gravitational wave targets

1

 $I_c\Omega_c^2$

2

 I_c

Model 2: Vortex unpinning (two component) model

[Sidery et al. 2010, LSC 2011, Prix et al. 2011]

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

- Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$
- Two component model: superfluid (s) and crust+everything else coupled to it (c) 1 $I_s \Omega_s^2$ + 1 $I_c\Omega_c^2$
	- 2 2

External torque (e.g. magnetic dipole radiation) acts only on the crust component, so lag develops between the two components: $ω = Ω_c - Ω_c > 0$

Garvin Yim **High priority transient continuous gravitational wave targets**

Ω*s*

 I_c

$$
J = I_s \Omega_s + I_c \Omega_c \qquad E_{rot} =
$$

5

Model 2: Vortex unpinning (two component) model

[Sidery et al. 2010, LSC 2011, Prix et al. 2011]

External torque (e.g. magnetic dipole radiation) acts only on the crust component, so lag develops between the two $components: \omega \equiv \Omega_s - \Omega_c > 0$

$$
J = I_s \Omega_s + I_c \Omega_c \qquad E_{rot} =
$$

Garvin Yim High priority transient continuous gravitational wave targets At a glitch, the components couple and the superfluid component transfers angular momentum to the crustal component, leading to an observed glitch

- Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$
- Two component model: superfluid (s) and crust+everything else coupled to it (c) 1 2 $I_s \Omega_s^2$ + 1 2 $I_c\Omega_c^2$

-
-

Model 2: Vortex unpinning (two component) model

[Sidery et al. 2010, LSC 2011, Prix et al. 2011]

The superfluid component spins-down as the crustal component spins-up $\Delta J = I_s \Delta \Omega_s + I_c \Delta \Omega_c = 0$

Model 2: Vortex unpinning (two component) model

[Sidery et al. 2010, LSC 2011, Prix et al. 2011]

-
- and they co-rotate after the glitch at $\Omega_{co} = \Omega_{0,i} + \Delta\Omega_i$ for $i = s, c$.

Garvin Yim **High priority transient continuous gravitational wave targets**

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

- The superfluid component spins-down as the crustal component spins-up $\Delta J = I_s \Delta \Omega_s + I_c \Delta \Omega_c = 0$
- and they co-rotate after the glitch at $\Omega_{co} = \Omega_{0,i} + \Delta\Omega_i$ for $i = s, c$.
- We can calculate the resultant change in energy for each component $\Delta E_{rot,i} =$ 1 2 *I_i*[Ω²_{co} – (Ω_{co} – ΔΩ_{*i*})²]

 -1

 E_{GW} = 1 2 *I*(ΔΩ) 2 *Is* $\left| \right|$ *I*) −1

Garvin Yim High priority transient continuous gravitational wave targets 6/23

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

and when we sum the two components together, we get an excess energy of:

$$
\int_{1}^{1} \text{ where } I = I_{s} + I_{c}
$$

Model 2: Vortex unpinning (two component) model [Sidery et al. 2010, LSC 2011, Prix et al. 2011]

Model 3: Transient mountain model [Yim & Jones 2020, Moragues et al. 2023]

Garvin Yim High priority transient continuous gravitational wave targets

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers $\dot{\nu}$ | due to mountain, present until | $\dot{\nu}$ |

Model 3: Transient mountain model [Yim & Jones 2020, Moragues et al. 2023]

Considers angular momentum conservation **·**
– **·**
– .

⁻ Glitch: Δ $\Omega(t) = \Delta$ $\Omega_p + \Delta$ $\Omega_t(t) = \Delta$

Garvin Yim High priority transient continuous gravitational wave targets

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers $\dot{\nu}$ | due to mountain, present until | $\dot{\nu}$ |

$\Delta \nu$ (μ Hz) .
.
. .

[•] e^{-t} $\Omega_p + \Delta$ Ω_t *τEM* -3.735 \hat{V} (10⁻¹⁰ Hz s⁻¹) -3.740 -3.745

.
.
. $\Omega_p + \Delta$.

[•] Ω_t e^{-t} *τEM*

*I*Δ **·**
? $\dot{\Omega}_t(t) = -\frac{32}{5}$ 5 *G c*5 $I^2\Omega^5$ ε²(*t*)

Garvin Yim **High priority transient continuous gravitational wave targets**

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers $\dot{\nu}$ | due to mountain, present until | $\dot{\nu}$ |

Model 3: Transient mountain model [Yim & Jones 2020, Moragues et al. 2023]

- Considers angular momentum conservation **·**
– **·**
– .

⁻
	- Glitch: Δ $\Omega(t) = \Delta$ $\Omega_p + \Delta$ $\Omega_t(t) = \Delta$
	- Attribute the transient part to a transient mountain

Model 3: Transient mountain model [Yim & Jones 2020, Moragues et al. 2023]

Considers angular momentum conservation **·**
– **·**
– .

⁻

Glitch: Δ $\Omega(t) = \Delta$ $\Omega_p + \Delta$ $\Omega_t(t) = \Delta$

*I*Δ **·**
? $\dot{\Omega}_t(t) = -\frac{32}{5}$ 5 *G c*5 $I^2\Omega^5\varepsilon^2(t) \rightarrow \varepsilon(t) = \sqrt{\frac{5}{25}}$

Garvin Yim **High priority transient continuous gravitational wave targets**

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers $\dot{\nu}$ | due to mountain, present until | $\dot{\nu}$ |

Attribute the transient part to a transient mountain

Model 3: Transient mountain model [Yim & Jones 2020, Moragues et al. 2023] $\dot{\nu}$ | due to mountain, present until | $\dot{\nu}$ | Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers Considers angular momentum conservation $\Delta \nu$ (μ Hz) **·**
– **·**
– .

⁻ .
.
. .

[•] e^{-t} Glitch: Δ $\Omega(t) = \Delta$ $\Omega_p + \Delta$ $\Omega_t(t) = \Delta$ $\Omega_p + \Delta$ Ω_t *τEM* Attribute the transient part to a transient mountain -3.735 $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$
 $\begin{pmatrix} 10^{-10} & 3.740 \\ -3.745 & 1 \end{pmatrix}$ **·**
? c^5 $\dot{\Omega}_t(t) = -\frac{32}{5}$ *G* Δ Ω_t $I^2\Omega^5\varepsilon^2(t) \rightarrow \varepsilon(t) = \sqrt{\frac{5}{25}}$ 1 **·**
? $\frac{dS_1}{Q_2}e^{-\frac{t}{2\tau_H}}$ -3.750 *I*Δ 2*τEM c*5 5 32 *G I* -50 -100 $\overline{0}$ Days from $MJD = 53067.1$ N ote: $h_0(t) \propto \varepsilon(t)$ so if $h_0(t) \equiv h_0 e^{-\frac{t}{\tau_{GW}}}$ then $\tau_{GW} = 2\tau_{EM}$

Model 3: Transient mountain model [Yim & Jones 2020, Moragues et al. 2023]

 $L_{GW} =$

and integrate between $t = 0$ and $t \to \infty$ to find

where $Q = \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$. $ΔΩ_t$ ΔΩ $=-\frac{\Delta}{\sqrt{2\pi}}$.
.
. Ω_t *τEM*ΔΩ

Garvin Yim High priority transient continuous gravitational wave targets

- Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers $\dot{\nu}$ | due to mountain, present until | $\dot{\nu}$ |
- Once ε (*t*) is obtained from torque balance, can substitute into GW luminosity

Analogous to "CW spin-down limit" but for glitches!

Model 4: Ekman pumping model

[van Eysden & Melatos 2008, Bennett et al. 2010, Singh 2017]

$η = 10^{-7} - 10^{-5}$ from simulations (Singh 2017)

Summary: Tangential forces at a boundary of a viscous fluid causes (non-axisymmetric) meridional flows, sets up mass and current multipoles

Credit: Benton & Clark (1974)

 $E_{GW} = \eta I_{crust} \Omega \Delta \Omega$

Model 5: Naïve (one component) model [Ho et al. 2020]

 $E_{GW} =$ 1 2 $I_s(\Omega_s^2 - \Omega_c^2) \rightarrow \frac{E_{GW}}{E_{GW}} = I\Omega \Delta \Omega$

Garvin Yim **High priority transient continuous gravitational wave targets**

- Summary: 100% rotational kinetic energy from glitch $\rightarrow E_{GW}$
	- $E_{GW} = I\Omega\Delta\Omega$: (Assumes $\Delta I = 0$, unlike starquake model)
- Model 6: Naïve (two component) model [Prix et al. 2011, Moragues et al. 2023]
	- Summary: Reservoir of rotational kinetic energy in superfluid $component$ if $\Omega_{c} > \Omega_{c}$
		-
- Both agnostic models provide an "upper energy limit" for glitches!

where *κ* is defined as $E_{GW} = \kappa I \Omega^2$ $\left\{ \right.$ ΔΩ Ω)

11/23

Summary table

where *κ* is defined as $E_{GW} = \kappa I \Omega^2$ $\left\{ \right.$ ΔΩ Ω)

Summary table

Part II - Gravitational wave signal analysis

Signal-to-noise ratio in terms of E_{GW} [Prix et al. 2011]

- the signal-to-noise ratio (SNR) ρ in terms of E_{GW} .
-

Garvin Yim **High priority transient continuous gravitational wave targets**

Now that we have E_{GW} for different models, we need to find a way to express

The SNR is defined as: $\rho = \sqrt{(h|h)}$ where $(a|b) = 4Re$ ∞ $\bf{0}$ *a* ˜(*f*)*b* \tilde{b} *(*f*) *Sn*(*f*) *df*

Signal-to-noise ratio in terms of E_{GW} [Prix et al. 2011] Now that we have E_{GW} for different models, we need to find a way to express the signal-to-noise ratio (SNR) ρ in terms of E_{GW} . The SNR is defined as: $\rho = \sqrt{(h|h)}$ where $(a|b) = 4Re$ *Polarisation:* $h(t) = F_+(t)h_+(t) + F_x(t)h_x(t)$ where $h_{+,x}(t) = h_0(t) f_{+,x}(\theta, t; t)$ ∞ $\bf{0}$ *a* ˜(*f*)*b* \tilde{b}

Garvin Yim **High priority transient continuous gravitational wave targets**

*(*f*) *Sn*(*f*) *df*

Signal-to-noise ratio in terms of E_{GW} [Prix et al. 2011] Now that we have E_{GW} for different models, we need to find a way to express the signal-to-noise ratio (SNR) ρ in terms of E_{GW} . The SNR is defined as: $\rho = \sqrt{(h|h)}$ where $(a|b) = 4Re$ Polarisation: $h(t) = F_+(t)h_+(t) + F_+(t)h_+(t)$ where $h_{+,x}(t) = h_0(t) f_-(t)$ ∞ $\bf{0}$ *a* ˜(*f*)*b* \tilde{b} \rightarrow $\rho^2 = \beta$ 1 *Sn*(*f*) ∫ *Tobs* 0 $h_0^2(t)dt$ $\beta = 1$ if $F_{+x} = \frac{1}{\sqrt{2}}$ (constant), $\theta = \frac{\pi}{2}$ and 1 2 $\theta =$ *π* 2 $l = 0$ $\beta = \frac{1}{25}$ if sky and orientation averaged 4 25

Garvin Yim **High priority transient continuous gravitational wave targets**

(*h*) where
$$
(a|b) = 4Re\left(\int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)} df\right)
$$

$$
t)h_{\mathsf{x}}(t) \quad \text{where} \quad h_{+,\mathsf{x}}(t) = h_0(t) \, f_{+,\mathsf{x}}(\theta, t; t)
$$

$$
\beta = 1 \text{ if } F_{+,\times} = \frac{1}{\sqrt{2}} \text{ (constant)}, \theta = \frac{\pi}{2} \text{ and } t = 0
$$

[Jarankowski, Królak & Schutz 1998]

Signal-to-noise ratio in terms of E_{GW} [Prix et al. 2011] Now that we have E_{GW} for different models, we need to find a way to express the signal-to-noise ratio (SNR) ρ in terms of E_{GW} . The SNR is defined as: $\rho = \sqrt{(h|h)}$ where $(a|b) = 4Re$ Polarisation: $h(t) = F_+(t)h_+(t) + F_+(t)h_+(t)$ where $h_{+,x}(t) = h_0(t) f_-(t)$ ∞ $\bf{0}$ *a* ˜(*f*)*b* \tilde{b} \rightarrow $\rho^2 = \beta$ 1 *Sn*(*f*) ∫ *Tobs* 0 $h_0^2(t)dt$ $\beta = 1$ if $F_{+x} = \frac{1}{\sqrt{2}}$ (constant), $\theta = \frac{\pi}{2}$ and 1 2 $\theta =$ *π* 2 $l = 0$ 4

$$
(h) \quad \text{where} \quad (a \mid b) = 4\text{Re}\left(\int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)} df\right)
$$

 $\beta = \frac{1}{25}$ if sky and orientation averaged 25 [Jarankowski, Królak & Schutz 1998]

$$
t)h_{\mathsf{x}}(t) \quad \text{where} \quad h_{+,\mathsf{x}}(t) = h_0(t) \, f_{+,\mathsf{x}}(\theta, t; t)
$$

$$
\beta = 1 \text{ if } F_{+,x} = \frac{1}{\sqrt{2}} \text{ (constant), } \theta = \frac{\pi}{2} \text{ and } \iota = 0
$$

But for targeted searches, we can do better. We can, and should, incorporate information about sky position.

$$
(h) \quad \text{where} \quad (a \mid b) = 4\text{Re}\left(\int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)} df\right)
$$

 $\beta = \frac{1}{25}$ if sky and orientation averaged 4 25 [Jarankowski, Królak & Schutz 1998]

Now that we have E_{GW} for different models, we need to find a way to express

$$
t)h_{\mathsf{x}}(t) \quad \text{where} \quad h_{+,\mathsf{x}}(t) = h_0(t) \, f_{+,\mathsf{x}}(\theta, t; t)
$$

$$
h_0^2(t)dt
$$
 $\beta = 1$ if $F_{+,x} = \frac{1}{\sqrt{2}}$ (constant), $\theta = \frac{\pi}{2}$ and $t = 0$

But for targeted searches, we can do better. We can, and should, incorporate

Transient CW approximation

which was done in JKS.

Comparing to our earlier expression, we find: $\beta = A_2(\delta, \psi, \iota, \lambda, \gamma)$

Garvin Yim **High priority transient continuous gravitational wave targets**

- Ideally, we want to discard the B_2 term. One could do so by averaging over α ,
- Here, we note that for sufficiently long T_{obs} , the A_2T_{obs} term will dominate:

 $\rho^2 = [A_2(\delta, \psi, \iota, \lambda, \gamma)T_{obs} + B_2(\alpha, \delta, \psi, \iota, \lambda, \gamma; T_{obs})] - \frac{h_0^2}{g}$ 0 *Sn*(*f*)

 \rightarrow $\rho^2 = A_2(\delta, \psi, \iota, \lambda, \gamma)$ $h_0^2 T_{obs}$ *Sn*(*f*)

Quantifying the error

$max(T_{thres})$ as a function of δ

Garvin Yim High priority transient continuous gravitational wave targets 16/23

Error in SNR will be less than 10% for all (*α*, *δ*) so long as *Tobs* > 1.74 d

Data information

(naïve, vortex unpinning, transient mountain).

: 686 glitches from 219 pulsars : 132 glitches from 57 pulsars $\left\{ \right.$ ΔΩ $\overline{\Omega}$ ^{, *d*} $\begin{array}{c} \hline \end{array}$ $\left\langle \right\rangle$ ΔΩ $\overline{\Omega}$, Q, d $\begin{array}{c} \hline \end{array}$

$$
E_{GW} \rightarrow \frac{\Delta \Omega}{\Omega}, Q, \frac{I_s}{I}
$$

$$
\rho \rightarrow \Omega, d, S_n(f)
$$

$$
\rho^2 = \frac{5A_2 G}{2\pi^2 c^3} \frac{1}{S_n(f)} \frac{E_{GW}}{f^2 d^2}
$$

 $S_n(f)$ = Hanford, Livingston and Virgo in O4

JBCA Glitch Catalogue:
$$
\frac{\Delta \Omega}{\Omega}
$$
ATNF Glitch Table:
$$
\frac{\Delta \Omega}{\Omega}
$$
,
$$
\rho
$$

ATNF Pulsar Catalogue: Ω, d

Garvin Yim High priority transient continuous gravitational wave targets

We can now analytically approximate the SNR from the different models

SNR histograms

Garvin Yim **High priority transient continuous gravitational wave targets**

Naïve Vortex unpinning Transient mountain

Top 15 targets for naïve models

Garvin Yim High priority transient continuous gravitational wave targets

Naïve models

Top 15 targets for vortex unpinning model

Garvin Yim **High priority transient continuous gravitational wave targets**

Vortex unpinning model

Top 15 targets for transient mountain model

Transient mountain model

-mode calculation (Yim *f* & Jones 2023) gives: $\rho = 50, 25, 7$, for Livingston, Hanford and Virgo (but using $\beta = 1$)

Garvin Yim **High priority transient continuous gravitational wave targets**

itched on 29th April 2024!

1, 16615, 16619 20:52:18.1

erving during glitch

Transient mountain 2.4×10^{42}

Part IV - Summary

Summary

- The SNR of a transient CW source can be estimated by obtaining E_{GW} .
- We explored 6 different models associated with pulsar glitches.
- For a sufficiently long transient CW, we can make a better estimate of the SNR by including information about the pulsar's sky position.
- In O4, we will start putting upper limits on some of these models. As shown, this can already be done with Vela's latest glitch!
	- Must start considering what physics can be learnt from a (non-)detection: superfluidity, elasticity/plastic flow, viscosity, magnetic diffusion, temperature gradients, etc…

Continuous Waves School at KIAA, Beijing

- 7th 11th July
- Invited lecturers:
	- Prof. Maria Alessandra Papa (Albert Einstein Institute) ψ
	- Prof. Ian Jones (University of Southampton)
	- Dr. David Keitel (University of the Balearic Islands) ψ
	- Dr. Lilli Sun (Australian National University)
	- Plus 6 guest speakers
	- Speak with me if you are interested!
	- Email: g.yim@pku.edu.cn
- Website: <https://garvinyim.wixsite.com/home/cw-school-at-kiaa>
- Hungary, Austria, Belgium, Luxembourg, Malaysia, Brunei, Singapore.

Garvin Yim **High priority transient continuous gravitational wave targets**

Visa-free nationalities: France, Germany, Italy, the Netherlands, Spain, Switzerland, Ireland,

