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* Non-axisymmetric neutron stars are expected to emit quasi-
monochromatic long-standing continuous waves (CWs).

* Detection of CWs may give valuable insight into open questions
about the population of neutron stars and their internal
structure.

* Both coherent and semicoherent methods have their limitations.

It would be nice to have a quick look-up tool !

Enter Deep Learning. By using significantly less computational
cost, in some applications it has proven to rival matched- Fig 1. DALL E3’s impression of a rotating neutron star
filtering sensitivity.
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Novel neural-network architecture for continuous gravitational waves
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The high computational cost of wide-parameter-space searches
(CWs) significantly limits the achievable sensitivity. This challen
alternative search methods, such as deep meural networks (DNN

convolutional image-classification DNN architectures to all-sky and ¢ Deep-learning continuous gravitational waves:

* Instead of development from scratch, we start with a Multiple detectors and realistic noise

paper, we offer a hypothesis for this limitation and propose new desig ;
of concept, we show that our novel convolutional DNN architecture 2 Christoph Dreissigacker® and Reinhard Prix

L3
ret ra l n e d Sta te - Of-t h e _a rt C N N Re S N ext_ 5 O atargeted search (i.e., single sky-position and frequency) in Gaussiav Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute), D-30167 Hannover, Germany
days. We illustrate this performance for two different sky positions a

and Leibniz Universitit Hannover, D-30167 Hannover, Germany

1 Use of E P Method and C lutional N 1 Network in All-Sky S h f 2020; published 6 July 2020)
* Train models (Gauss ResNeXt and O3 ResNeXt) to B e B e e Gemeitationay Wy ot ATk Sl el fo o 201 i 6

tinuous gravitational waves is limited by
: : ; i neworks (DNNs) ca perform all-sy searches
detect CW signals in both Gaussian and real detector i S Vemamoto! sl Tababio Tasaba! o g e T 0, 044003 G

™ s “"”‘T‘””"_‘ of ”"""WZ"' A"‘mm..f'm ity K""."la 606-8. ; .'Mpﬂ.“ R | that could lead to a better overall sensitivity.
#Center for Gravitational Physies, Yukawa Institute for Theoretical Physies, Kyolo University, Kyolo G06-8502, Japan . !
g (simulated) strain data from two detectors

1 (Dated: March 12, 2021) N N
n O I Se sky-position) searches in addition to all-sky
The signal of continuous gravitational waves has a longer duration than the ebservation period. two-detector DNN is about 7% less sensitive

. . e Even if the waveform in the source frame is monochromatic, we will observe the waveform with about 51% less sensitive at high frequency
Y Eva I u ate th e e n e ra | Izat I o n Ca a bl I It Of t h e m Od el modulated frequencies due to the motion of the detector. If the source location is unknown, a o e > 3

y let of templates having different sky positions are required to demodulate the frequency, and the ering (using WEAVE). In the directed case
the applicable parameter region of coherent search. In from about 7%-14% at f = 20 Hz to about
w " . NP ahilines o man

required huge computational cost res
this work, we propose and examine

coherent search by followinguponly L A pobust machine learning algorithm to search for continuous gravitational waves.
situation in which only a single-detect

lend do maland A T SN TS SN [ T s——

FI

approximated by the stationary Gauss
polarization angle, the inclination ang

WHY?: Need for quick detection techniques for CW signals Eois i e e S ey of Gl Gl 612504, Dt

Many continuous gravitational wave searches are affected by instrumental spectral lines that
_ ! . could be confused with a continuous astrophysical signal. Several techniques have been developed
H obtained by picking up the amplituc to limit the effect of these lines by penalising signals that appear in only a single detector. We
u S | n g M L. transform data, and 3) the deep lears have developed a general method, using a convolutional neural network, to reduce the impact of
computational cost and the detection instrumental artefacts on searches that use the SOAP algorithm [1]. The method can identify
of features in corresponding frequency bands of each detector and classify these bands as containing
for analyzing O(10% )sec strain data. a signal, an instrumental line, or noise. We tested the method against four different data-sets:
Gaussian noise with time gaps, data from the final run of Initial LIGO (86) with signals added,
the reference S6 mock data challenge data set [2] and signals injected into data from the second
advanced LIGO observing run (O2). Using the S6 mock data challenge data set and at a 1%
false alarm probability we showed that at 95% efficiency a fully-automated SOAP search has a
sensitivity corresponding to a coherent signal-to-noise ratio of 110, equivalent to a sensitivity depth
of 10 Hz~'/2, making this automated search competitive with other searches requiring significantly
more computing resources and human intervention.

Joe Bayley,! Chris Messenger,! and Graham Woan!

in some reference direction, 2) the ex

check the validity of the detection pro
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Deep Learning basics

Parameters update (Gradient descent) <

Image filters)
feature detectors

y

Convolutional
Layer

Input Image

(extract and
learn image
features)

Qutput

‘ ' .

Pooling Convalutional Pooling Layer
Layer Layer Layer
(scaledown Fully Connected

previous layer) Layer
|classify learned features)

Feed forward

@ Actual label y’

I Loss function L(y,y")

Predicted label y

1 epoch/iteration
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We train a base network on a base dataset and task, and then we repurpose the learned features, or transfer them,
to a second target network to be trained on a target dataset and task.

 We don’t start with randomly initialized parameters
* [t saves time and achieves higher accuracy from epoch 1

GIANT PANDA 0.9

RED PANDA 0.05

RACCOON 0.01 higher slope higher asymptote
o | | e
5]
C
®
& .
s\ e with transfer
‘!G:J — without transfer
o higher start

Classifier  w#) Chihuahua training
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* Why not leverage the knowledge of a massive pre-trained state of the art CNN ?
i.e. Inception, ResNet, EfficientNet

We chose ResNeXt50 (updated version of ResNet)

* |t has residual blocks that preserve information between layers
* 25 million tunable parameters

1000 classes including:
o Goldfish

o Triceratops

ImageNetlK o Cats
Dataset o Dogs
o Go-karts
o Furniture
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Time frequency representation (Complex spectrogram)
SFT length = 30 min

Standard ResNeXt-50 input:
* 3 channels, each 224 px X 224 px

/ N\

224 frequency bins 224 SFT (each 30 mins)
1 He ~ 124 mHyz 224 x 30 min ~ 4.66 days

X —_—
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Gaussian noise data (Gauss ResNeXt)
* Two detector simulated gaussian noise
with realistic time gaps

Real detector data (O3 ResNeXt)
e Observation run O3 data from H1 and L1

Parameters prior distributions

« [rad] ¢ [rad] f [Hz] ¢ [rad]| 4 [rad]

—x/2 20 -1 0 0
1000 1 2m /2

COs L

Lower limit 0
Upper limit 27 /2

f=-10"" [Hz/s|

band width = 124 mHz

We adopted Curriculum learning, network’s SNR is the
difficulty criterion

p —2473/

R ()R (f)

SX(f) df,

SNR =500 SNR = 460 SNR = 40

\ J
/

~ 3x10* samples
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- ResNeXi-50 (32 x 4d) o Modificd ReeNeXt 20 o 1 Conventional CNN architecture lose
OUtPUL oo e ; . .
conv0 112 x 112 : 7 % 7,64, stride 2 : ; : information
i 3 x 3, maxpool, stride 2 | i i | S(giﬁiﬁﬁzla:)n [Imfgz::;r]:art} o Down Samp“n g
convl 56 x 56 i [1 % 1,64 1 I i i I Amplitude
% s so—s2| xs g . i * Feature transf. across layers
E 1% 1,256 1 i Frozen parameters i [l | |
i -1 % 17 256 1 : i i :::: NNNNNNN ---*-—-—-—— ---'j---q
comvZ  28x28 | |3x3,256,0=32 x4 i 1 TR “Modified ResNeXt-50 | Modified ResNeXt-50 | , _ _
b1 x 1,512 il i s b T L j I Residual connections prevent this!
i [1x 1,512 1 i A | Stage1 f H1 I I L1 I
convd 14 x14 1 13x3,512,C=32| x6 ||! i ] . Jl l l
i |1 x1,1024 1 : I 1 [ ——— [ . i
L 11 x 1 1024 IR i / Identity mapping of the input to
convd T x7 : 3% 3,1024,C = 32 ><3: i : deeper Iayers.
i _1 x 1,2048 1 i (Parameter update enabled) i I \ /
i | BN A F Linear(4,64) i o
1x1 |  @lobalaveragepool i 1000-d fe I | BN,Drop-out | This is a key feature of the ResNeXt
E 1000-d fc, softmax 1 i BN, reLU, Drop-out i | Stage 2 Fusion layer i Linear(64,32) i 3 rCh |teCtu re
i | i 256-d fc, softmax i i i . BN i
o | N — H | ! Linear(32,2) ;
= I i Sigmoid |
25 million trainable E_——————— T ] """"""
parameters ~500.000 trainable parameters

Final prediction 6

~6 million total trainable parameters
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Training and validation

To ensure effective training:
* Hyperparameter tuning with Optuna
L2 regularization with 1 = 107>
e Early stopping
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Loss function: cross entropy  [op = — Zpi log(g;)
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Model’s prediction

Model training with real detector data

- Training Loss
| = Validation Loss |

0 100 200 300 400 500 600
Epoch

Training time ~ 20.3 hours

Software and Hardware: Pytorch 2.0 implementation / 16 GB NVIDIA TESLA V-100 GPU
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Performance

Real detector noise

We compared Gauss ResNeXt and O3 ResNeXt
against the SOAP CW' pipeline (vitmap) and
Matched-Filtering (WEAVE)

Our two metrics are the SNR and sensitivity
depth (at a pr, = 1%) for which we attain a
90% efficiency of detection
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03 ResNeXt — 36.04 — 63.16
SOAP Vitmap 19.37 17.11 167.57 157.90
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[1]J. Bayley et al, Phys. Rev. D. 102 083024 (2020)
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* Transfer learning is a good alternative to train deeper models in less time

* We developed binary classifier CNNs, Gauss ResNeXt and O3 ResNeXt, using transfer learning to
detect continuous wave (CW) signals in Gaussian and real detector noise.

* Both models achieved detection sensitivities close to matched-filtering for short observation
periods (approximately 4.66 days).

e Gauss ResNeXt and O3 ResNeXt showed strong detection capabilities in their respective noise
environments but had poor generalization to other noise types.

Future Work: Generalization to longer spectrograms... Bayesian approach or even more DL!
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