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Detection of Neutron stars (NSs):

» Electromagnetic radiation: Pulsar (magnetized rotating NSs) emits beams of electromagnetic
radiation out of its magnetic poles, which does not coincide with the rotational axis, so the emission
beams are detected as pulse (Lighthouse effect).

» Accreting NSs: locate in binary systems and manifest themselves as X-ray sources.

» Gravitational wave (GW) from Binary merger: NSs in binary system are strong sources
of gravitational waves (due to nonzero time varying quadrupole moment)
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How to Detect ‘Isolated’ or ‘Invisible’ NSs?

Isolated NSs (not in binary/ negligible dipole radiation) = tiny size & thermal energy = lowly luminous
(or pulse not directing towards earth) thus Invisible

difficult to detect in electromagnetic (EM) surveys, such as SDSS, Kepler, Gaia

But isolated NSs and WDs can produce continuous GW!
emitted continuously, as long as star is magnetized and spinning
(like a singer holding a single note for a long time).

Direct detection of invisible stars! =pidea about mass, magnetic field, spin and equation of state.




Introduction

suggests the possible existence of NSs with M > 2M,, similar to pulsar timing study of PSR J0740 + 6620 (Cromartie et al.
2020).

. NSs are generally born with mass 1.4 — 1.6Mg. GW from merger GW 190814 (M = 2.50 — 2.67M;Abbott et al. 2020)

One of the most exciting possibilities (proposed by our group) to explain such high mass is by high magnetic field
J along with rotation (Pili et al. 2014, Das et al. 201 3).
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. NSs are generally born with mass 1.4 — 1.6Mg. GW from merger GW 190814 (M = 2.50 — 2.67M;Abbott et al. 2020)

One of the most exciting possibilities (proposed by our group) to explain such high mass is by high magnetic field
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Origin of strong magnetic field: Collapse of highly magnetised star — Flux freezing —Dynamo (a-Q)— amplify
up to ~1017718G for NS at core: Surface field could be 10*°~16G (Thompson & Duncan 1993)

. High magnetic field and misalignment in turn would lead them to emit continuous GW (CGW).

. We simulate CGW from isolated magnetized rotating NSs and try to understand observation plausibility.




GRAVITATIONAL WAVES FROM PULSATING COMPACT STARS
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MODELLING NS
USING XNS Pili et al. 2014

Einstein’s equation solver in GRMHD




XNS (A code to study magnetized NSs)

Einstein’s equation (describes space-time metric)
GMV = 87TTW

ds? = —a? dt? + y* ldrz +712d0% +r2sin?0(do + B° dt)zl

Axisymmetric equilibrium
configuration
(Uniformly/differentially
rotating &
Poloidal/Toroidal/mixed field)

of NSs in GRMHD

Magneto-Hydrostatic Equilibrium

(provides distribution of matter/energy)

2
T* = (e + p + b*>)ubtu’ — b*bY + (p + %) gty
m) TOV eq

Momentum-energy conservation: VMT‘“’ =




Input »
1
* EOS: polytropiclaw P = kp1+ﬁ, adiabatic index ¥y =1 + 1/n (We use K=100, y=1.95).

* Magnetic field:

Toroidal: magnetic polytropic law B®~rk,,p™, m =polytropic index, K,,= magnetization index.

Poloidal: Current J* ~rk,,p, currents are all confined within the star ® B", B°

Output ® M,R, I, 1,,



Toroidal Magnetic field (§ — B¢$) with rotation

Density (1.e14 g/em3) B (1.e18 G)

Density isocontour Magnetic field isocontour

MD & Mukhopadhyay ApJ, 955,19 (2023
arXiv:2302.03706

p. =10%g/cc,B gy =5 X 10176, v = 500Hz = M = 2My, Ry = 14km,Rp/Rg = 0.92, ME/GE = 0.056



Poloidal Magnetic field (§ = B, 17+ Bea) with rotation

Density (1.e14 g/cm3) Density (1.e14 g/cm3)
. S B S e 4 I .

Density isocontour Magnetic field isocontour

MD & Mukhopadhyay ApJ, 955,19 (2023
arXiv:2302.03706

p.=105g/cc, B, = 5% 10176, v = 50Hz, =» M = 2My, Ry = 12km,Rp/R; = 0.81, ME/GE = 0.02



NAL WAVE




GW strain for various
magnetic configuration
(modelled from XNS) as a
function of frequency along
with the sensitivity curves of
various detectors.
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Rotation frequenc
GW strain (h) « i

Then now long we can cetec: them?




Ohmic dissipation

Ambipolar diffusion

Hall drift

GW strain (h) «

Then now long we can cetec: them?
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Evolution of B (v, x constant)

Poloidal
Loty T TN | — =0
@ e S| t=100yr
@ J N t=10%yr
\
i | —— t=10%yr
1014 1
i
|
101 103 10° 0 > 10
R (km)
t (yr)
10204 1020 |
1021 10211
10-224_. : 10224
L Lo-23 NS detectable after birth Engglgr L . NS detectable after birt ExglrE:Er
10_24 | 10—24 J
Old NS not decectable Old NS not detectable
10725 ; a 10-25 . ol
[ |
102 103 104 102 103 Tod
v (HZ) v (Hz)
_ Toroidal/poloidal .. .,. _ 16 MD & Mukhopadhyay ApJ, 955,19 (2023)

v = 700Hz, v = 650Hz



L Rotation frequency (Q) i .
GW strain (h) « Obli.quity angle
Then now long we can cetec: them?
[Q and x evolution:}

GW (quadrupole) radiation & Electromagnetic (dipole) radiation: Q, x §
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Evolution of v and x (B constant): Toroidal magnetic field
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Evolution of v and x (B constant): Toroidal magnetic field
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However, for BPeleidal

few days of time,

but stable NSs are actually toroidally dominated.

(Wickramasinghe et al. 2014)
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Timescale for v, y decay << Timescale for B decay

Decay of v, Y is more important to study GW amplitude decay



TO INCREASE GW

DETECTION POSSIBI




Signal to noise ratio (SNR) for | Year integration time
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arXiv:2302.03706

The signal is not detectable instantaneously.

After one month of integration time, it will be detectable!!
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» Small probability of detection in this 5-10 year?

» Number of NSs to be detected (in 10 kpc? /galactic
volume) in |10 yr observational timescale is < 0.02.
[Ns birthrate in galaxy 0.002/year: Beniamini et al. 2019]



CONCLUSION




Uniformly rotating massive NSs, which are detectable after birth, may not be detectable forever. Because its
GW amplitude decays due to decay of B, Q and x. Perhaps this is why we have not yet detected CGW from
NSs by aLIGO, aVIRGO, KAGRA.

We can try to increase the detection probability by calculating SNR over 1 year leading to direct
detection of NSs (which cumulatively adds up the SNR, thus can have better probability to detect after
some time).

Future gravitational wave missions with Einstein Telescope and Cosmic Explorer should be planned
accordingly to detect such massive NSs, which, if successful can provide us an idea about its spin, magnetic
field, as well as about the equation of state.




THANKYO
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