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Continuous gravitational waves

• Persistent, quasi-monochromatic signals

• Amplitude is very weak

• We need to accumulate O(yr) long data to detect CGWs

• The sensitivity of CGW search is limited by two difficulties.
‣ Computational cost. 

‣ Instrumental lines (narrow spectral artifacts). 



• This talk is based on two papers:

- TSY & Tanaka, PRD103, 084049 (2020)

- TSY, Miller, Sieniawska, and Tanaka, PRD106, 024025 (2022)

in which we proposed new pipeline for all-sky searches (no information 
about source) with a convolutional neural network.

• I also talk about our ongoing work, in which we extend our work for 
directed searches (the source direction is known) with modified 
preprocessing algorithm.

Topic of this talk



Deep learning

• Neural network (NN) is inspired by the structure of a human brain, mimicking the way 
that biological neurons signal to one another.

• Highly non-linear function controlled by many parameters.

• NN’s parameters are optimized using a training dataset before we apply NN to test data 
or a real event.

https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160 https://developer.nvidia.com/blog/digits-deep-learning-gpu-training-system/

e.g. Goodfellow et al., “Deep learning” as a textbook
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Preprocess

• The preprocess transforms data into another type of data so that neural 
networks will be able to treat the data more easily.

• Example: whitening and bandpass for CBC signals

• A raw strain data is dominated by detector noise. CBC signals can not be found by eye. After 
whitening and bandpass, CBC signals can be easily found by eye.



Proposed algorithm
Place the coarse grid points on the sky

For ngrid:

Remove doppler modulation

Make spectrogram

For frequency bin:

Perform Fourier transform over all times

Give transformed data to neural network and get prediction

If prediction = “CGW exists”:

Store {ngrid, frequency bin} as a candidate
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Waveform model of CGW & line
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r(t): detector position w.r.t. SSB, n: source direction

Doppler modulation
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nline(t) = n0 cos(2⇡flinet+ �0)

CGW

Line

(We assume a line has stable frequency and exists for entire observation period.)

Amplitude is measured by 
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Remove Doppler modulation
We use a coarse grid points on the sky. It should be 
enough dense to remove the Earth rotation (daily).

On the frequency bin being closest to the GW 
frequency, SFT only has the residual phase originated 
from the Earth’s orbital motion (annual).

* For explanation, we neglect the antenna pattern 
functions, the window function.

* Also, we neglect df/dt.

* Lines can be distinguished from CGWs because of 
this process.

�(t) ⇠ 2⇡fgwt+ ��(t) + ��(t)
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We pick up the frequency bin closest to fgw .

SFT data contains residual phase which can be 
modeled by cos function.

It can be rewritten by the Fourier transform of 
Bessel function by Jacobi-Anger expansion.

By performing another Fourier transform, you can 
accumulate the signal power into small number of 
bins.

Perform Fourier transform after SFT

Jℓ(30)

ℓ
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Transformed data 5

FIG. 1. Examples of the real part of the doubly Fourier
transformed signals Sak. From top left in the clockwise di-
rection: only Gaussian noise, an astrophysical signal contam-
inated by Gaussian noise, an astrophysical signal contami-
nated by Gaussian noise and line noise, line noise and Gaus-
sian noise. The amplitude of the astrophysical signal is set
to log10 ĥ0 = �1.0 and the line noise is log10 ĥ

line
0 = 0.0 (the

amplitude parameters ĥ0 and ĥline
0 are defined in Eq. (4.5)

and (4.6), respectively). Note that these values are an opti-
mistic case.

Under the assumption that the noise is Gaussian, the247

noise in di↵erent SFT segments are independent. There-248

fore, the noise power spectrum density is249

hñak[j]ñ
⇤
ak[j

0]i = 1

2Tseg
Sn(fk)�jj0 , (2.37)

for all grid points a. Here, we denote the detector’s Gaus-250

sian noise after time resampling by251

na(⌧) := n(ta(⌧)) , (2.38)

and its Fourier transform by252

ñak[j] =
1

L

L�1X

m=0

na[jL+ n]e�2⇡imk/L
. (2.39)

We neglect the e↵ect of the Tukey window. The Fourier253

transform in Eq. (2.39) di↵ers from Eq. (2.36) by the254

normalization factor of 1/L. Similarly to Eq. (2.32), we255

define256

Nak[`] :=
1

Nseg

Nseg�1X

j=0

ñak[j]e
�2⇡ij`/Nseg . (2.40)

The variance of Nak[`] can be obtained

hNak[`]N
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1

N2
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X
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hñak[j]ñ
⇤
ak[j

0]ie�2⇡i(j`�j0`0)/Nseg

=
Sn(fk)

2NsegTseg
�``0 . (2.41)

We generate the simulated Gaussian noise in the trans-257

formed strain data by using Eq. (2.41).[54]258

C. Line noise259

Line noises are usually classified into three types: (1)260

perfectly sinusoidal line noise, (2) sinusoidal line noise261

with finite coherence time, and (3) comb line noise. A262

perfectly sinusoidal line noise is modeled by a sinusoidal263

function with a constant frequency. This is the simplest264

model of a line noise. In practice, the frequency of a line265

noise can modulate with a certain time scale. This can be266

modeled by a sinusoidal line with finite coherence time.267

Some sources can cause multiple line noises with di↵erent268

frequencies that are evenly spaced. They are classified as269

a comb line noise. In this subsection, we briefly review270

each types of line noise.271

1. perfectly sinusoidal line noise272

A perfectly sinusoidal line noise is modeled by273

n
sin
line(t) = n0 cos(2⇡flinet+ �0) , (2.42)

where fline is the line noise frequency. The model (2.42)274

does not have neither frequency nor amplitude modula-275

tion. The spectral density has a infinitely narrow peak276

at the frequency fline.277

2. sinusoidal line noise with finite coherent time278

Line noise with a finite coherence time can be modeled279

in the frequency domain as follows. The Fourier trans-280

form of the line noise is written as281

ñ
coh
line(f) =

Z
dt ncoh

line(t)e
�2⇡ift

. (2.43)

The correlation function of ñcoh
line(f) can be modeled by282

h|ñcoh
line(f)|2i =

1

2
TSline(f) , (2.44)

and283

Sline(f) =
1

⇡

fcoh

(f � fline)2 + f2
coh

. (2.45)

TSY & Tanaka, PRD103, 084049 (2020) 
TSY et al., PRD106, 024025 (2022)

We assume four classes:
1. Null
2. Astrophysical (GW signal)
3. LineNoise
4. MixAstroLine (Line noise + GW signal)

(All classes contain Gaussian noises.)

CGW and lines can be distinguished by the differences in 
the response to the removal of Doppler modulation. 

* In these figures, we inject a strong CGW signal for 
visualization.



Dataset settings
•

• Fix df/dt = 0 [Hz/sec] (but we tested CNN also for nonzero df/dt cases.)

• Tseg = 2048 sec

• Tobs = 16777216 sec (~ 0.5yr)

• Random inclination angle, polarization, initial phase

• Sky positions are also randomly chosen. For each waveform, we pick up the closest grid point to the 
source location.

• Amplitude of signal : 0.01 ~ 10.0

• Amplitude of line noise : 1.0 ~ 10.0

• Line noise is a sinusoidal waveform.  

• # of training data: Null = Astrophysical = LineNoise = Mix = 20,000

fgw = fk + βT−1
seg , where fk = 100 Hz and β ∈ [−0.5,0.5]

fline = fk + βT−1
seg , β ∈ [−0.5,0.5]



Neural network & training settings
• input size = 8192 (= Tobs / Tseg )

• channels = 2 (real and imaginary parts of transformed signal)

• output size = 4, we interpret each of them as the probability of 
each class

• loss function: cross entropy loss

• batch size: 512

• total epoch: 300

• learning rate: 1.0e-4

• optimizer: Adam

• implemented with PyTorch, trained with a GPU GeForce 1080Ti

Refs: 
Kingma and Ba, arXiv: 1412.6980 (2014)
Paszke et al., arXiv: 1912.01703 (2019)
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TABLE III: Line noise parameters.

Description Distribution

Normalized amplitude ĥline
0 Log uniform on [10�2, 101]

Frequency parameter �line Uniform on [�0.5, 0.5]

Initial phase �0 Uniform on [0, 2⇡]

We use Eq. (2.8) as the line noise model. It is charac-
terized by the amplitude n0, the frequency fline, and the
initial phase �0. The frequency fline is also limited to the
range of Eq. (3.9). The normalized amplitude (3.13) and
the frequency parameter (3.11) are employed instead of
n0 and fline, i.e.,

ĥline
0 := n0

✓
Sn(fk)

1Hz

◆�1/2

, (3.14)

and

�line :=
fline � fk

�f
. (3.15)

After generating a sinusoidal line noise, it is transformed
by the time resampling. The grid point for time resam-
pling is sampled uniformly sampled from a set of grid
points.

Table. IV shows the structure of the CNN we used.
It consists of six convolutional layers, three max-pooling
layers, and three fully-connected layers. In the table, a
ReLU trasnformation is counted as a layer, and a linear
transform in the fully-connected layer and the convolu-
tional layer is separated from the activation.

We use Adam [4]. The deep learning library
PyTorch [5] is used. The training and the evaluation
are carried out with a single GPU GeForce Ti1080.

IV. RESULTS

Before evaluating the detection ability of our CNN,
we check the training progress. Figure. 2 shows the loss
evolution during training. The training loss seems to
converge, and the validation loss does not deviate from
the training loss. Therefore, the CNN is trained well and
does not exhibit overfitting.

We use 20000 simulated Gaussian noise data for eval-
uating the false alarm probability for the Gaussian noise
data. Table. V shows the result. Among 20000 test noise
data, 19 events are classified as the astrophysical class,
that is, the data contains the astrophysical signal. The
estimated false alarm probability for the Gaussian noise
is 0.095%. There is no confusion between the line noise
class and the mixed class.

For test data of Astrophysical class, we vary the loga-
rithm of the normalized amplitude, log10 ĥ0, from -2.0 to
-1.0 with the step of 0.1. We generate a data set consist-
ing of 2000 data for each amplitude. For each data set, we

TABLE IV: Structure of the CNN we used in this work.
The first column shows types of layers. The second column
shows the output size of the layer. The third column gives
the number of tunable parameters. Here, we separately list
the activation functions. Before the first fully-connected lay-
ers, the transformation called flattening. It transforms two
dimensional tensor into one dimensional vector. The total
number of tunable parameters is 4171170.

Layer Output size # of parameters

1D convolutional (16, 8177) 528

ReLU (16, 8177) -

1D convolutional (16, 8162) 4112

ReLU (16, 8162) -

Max pooling (16, 2040) -

1D convolutional (32, 2033) 4128

ReLU (32, 2033) -

1D convolutional (32, 2026) 8224

ReLU (32, 2026) -

Max pooling (32, 506) -

1D convolutional (64, 503) 8256

ReLU (64, 503) -

1D convolutional (64, 500) 16448

ReLU (64, 500) -

Max pooling (64, 125) -

Flattening (8000,) -

Fully-connected (512,) 4096512

ReLU (512,) -

Fully-connected (64,) 32832

ReLU (64,) -

Fully-connected (4,) 130

Softmax (4,) -

TABLE V: Result for the case where only Gaussian noise
exists. We use 20000 test events that contains only simulated
Gaussian noise. Our CNN can classifies the Gaussian noise
data with the accuracy of 99.9%. The false alarm probability
is about 0.1%.

Predicted class # of events Fraction [%]

Null 19981 99.905

Astrophysical 19 0.095

Line noise 0 0.0

Mix 0 0.0

apply the trained CNN and count the number of events
for each class. The result is shown in Fig. 3. The de-
tection probability exceeds 95% for log10 ĥ0 & �1.6. For
signals with smaller amplitudes, CNN gradually confuses
with Null class. CNN does not misclassify the Astrophys-
ical events as Line noise class nor Mix class.
Realistic gravitational wave sources naturally have

intrinsic frequency evolution. They are modeled in
Eq. (2.3). Therefore, we test our CNN also for the sig-



Validity against to line noises
TSY & Tanaka, PRD103, 084049 (2020) 
TSY et al., PRD106, 024025 (2022)
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range of Eq. (3.5). The normalized amplitude (3.8) are
employed instead of n0 i.e.,

ĥ
line
0 := n0

✓
Sn(fk)

1Hz�1

◆�1/2

. (3.9)

Table IV shows the parameters characterizing line noise
and how they are sampled. After generating sinusoidal
line noise, we transform it using the time resampling pro-
cedure with the randomly chosen grid points.

We prepare 20000 GW signals, 20000 sinusoidal lines,
and 20000 pairs of GW signals and lines for training.
They correspond to Astrophysical, LineNoise, and
MixAstroLine classes, respectively. In generating GW
signals, we use the fact that the extrinsic parameters (am-
plitude, polarization angle, inclination angle, and initial
phase) can be factored out of the CGW waveform. We
therefore generate the waveform that depends only on
fgw and source position. For each iteration of training,
we sample extrinsic parameters, include the e↵ects of ex-
trinsic parameters to determine the CGW waveform.

A similar factorization can be done for the line noise
waveform. We can factor out the amplitude and mul-
tiply the waveform by a randomly selected one in each
iteration. This means that the line noise waveform de-
pends only on fline. Before feeding the waveforms into
the CNN, we inject them into Gaussian noise with the
variance given by Eq. (2.43).

For the Null class, we only give Gaussian noise to the
CNN. Thus, we do not need to generate any data for Null
class in advance. The validation data are generated by
the same procedure, but the number of data is decreased
to 2000 for each class.

IV. RESULTS

Figure 2 shows the confusion matrix of the trained
CNN. We use 2000 test data for each class. The am-
plitude of gravitational wave is uniformly sampled from
log10 ĥ0 2 [�2.0,�1.0], and that of line noise is sam-
pled from log10 ĥ

line
0 2 [0.0, 1.0]. Here, we changed the

range of the signal amplitude from that employed in the
training data because we want to test our CNN for data
with realistic amplitudes. Most of the data in the Null
class is correctly classified as the Null class. The sig-
nificant point of Fig. 2 is that the CNN can discrimi-
nate between the presence and the absence of line noises.
The test events of the Null class and the Astrophysical
class are not misclassified as the LineNoise class or the
MixAstroLine class. On the contrary, the test data con-
taining line noise are classified in the LineNoise class
or the MixAstroLine class, and there are small confu-
sions with the Null class. From these results, it can be
concluded that the CNN can tell apart a line from its
absence.

From the top row of Fig. 2, it is found that only 0.5%
of events that contain just Gaussian noise are classified

FIG. 2. Confusion matrix of the CNN. This matrix quanti-
fies the fraction of testing data that were classified correctly
(diagonal elements) and incorrectly (o↵-diagonal elements).

TABLE V. Result for the case where only Gaussian noise
exists. We use 20000 test events that contains only simulated
Gaussian noise. Our CNN can classifies the Gaussian noise
data with the accuracy of 99.34%. The false alarm probability
is 0.66%.

Predicted class # of events Fraction [%]

Null 19868 99.34

Astrophysical 132 0.66

LineNoise 0 0.0

MixAstroLine 0 0.0

as the Astrophysical class. Furthermore, we use 20000
simulated Gaussian noise data for evaluating the false
alarm probability for the Gaussian noise, as shown in
Table. V. Among 20000 test noise data, 132 events are
classified as the Astrophysical class. The estimated
false alarm probability to misclassify Gaussian noise as an
astrophysical signal is 0.66%, which is comparable to that
estimated by 2000 test events. Even for 20000 events, we
find no confusion between the line noise class and the
mixed class.

We study the detailed result for the Astrophysical

class. With varying the normalized amplitude log10 ĥ0

from -2.0 to -1.0 with the step of 0.1, we prepare eleven
datasets corresponding to the respective values of the am-
plitude. Each data set consists of 2000 injections. We
apply the trained CNN to each dataset and count the
number of detected events for each predicted class. Fig-
ure 3 shows the fraction of events as a function of the
normalized amplitude. The detection probability exceeds
95% for log10 ĥ0 & �1.64. We also quote our results in
terms of the so-called sensitivity depth, which is defined

• CNN can distinguish the presence and the 
absence of line noise.

• Null (only Gaussian noise) is misclassified as 
Astrophysical class with the probability of 
0.5%.

• In the presence of line noise, it is hard to 
detect the signal.

・2,000 data for each class

・GW amplitudes are uniformly sampled from 

・Line noise amplitudes are uniformly sampled from 

−2 ≤ log10 ĥ0 ≤ − 1

0 ≤ log10 ĥline
0 ≤ 1
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FIG. 3. Detection e�ciency of the CNN for astrophysical sig-
nals injected into Gaussian noise. The horizontal axis shows
the logarithm of the amplitude, and the vertical axis is the
fraction of events. Orange squares indicate the detection
probability of astrophysical signals. For log10 ĥ0 & �1.64,
the detection probability exceeds 95%. The detection prob-
ability decreases as the amplitude decreases. The results of
the LineNoise class (green diamonds) and the MixAstroLine
class (red triangles) are overlapped.

as

D :=

p
Sn(fk)/1Hz�1

h0
= (ĥ0)

�1
. (4.1)

In terms of the sensitivity depth, our CNN has a sensi-
tivity of

D
95%

' 43.9 . (4.2)

The LIGO/Virgo collaboration has carried out all-sky
searches for isolated neutron stars using data from
LIGO/Virgo’s third observation data [30], which results
in upper limits on the gravitational-wave strain ampli-
tude. We compare the sensitivity depths of the standard
methods and our method in Table. VI. It shows that
our neural network can outperform the Time-domain F-
statistic and the SOAP. Furthermore, our method has
comparable sensitivity to the FrequencyHough and the
SkyHough. We emphasize, however, that they search
over di↵erent parameter spaces: the standard method
surveys a wide range of ḟ , while our method focuses on
quasi-monochromatic waves. The duration of the signal
is also di↵erent; O3 data has the duration of ⇠ 11 months
⇠ 2.9⇥107 sec, and our method assumes that signals last
for 224 ⇠ 1.6⇥ 107 sec.

Whereas the Astrophysical class and the Null class
are classified correctly, the events contaminated by the
line noise are not. The false alarm probability that the
line noise data is classified in the MixAstroLine class is
estimated to be 39.2%. To test the CNN for line noise
data, we prepare eleven data sets corresponding to dif-
ferent amplitudes of the line noise. Each data set con-
tains 2000 lines injected into Gaussian noise. Figure 4

TABLE VI. Comparison of the sensitivity depths of the stan-
dard all-sky search methods and our method. For Frequency-
Hough and Time-domain F-statistic, the upper limits on the
amplitude h95%

0 are presented in [30]. We converted them into
D

95% assuming
p

Sn(f) = 5.2⇥ 10�24[Hz�1] that is shown in
Fig. 6 of [30]. For SkyHough and Time-domain F-statistic,
we read the values respectively from Fig. 11 and Fig. 13 of [30]
that show their upper limit on the amplitude. We stress that
the parameter region and the strain duration are di↵erent de-
pending on the method.

Method Frequency band D
95%

FrequencyHough at 100 Hz 42⇠ 43

SkyHough at 116.5 Hz 47.2

Time-domain F-statistic at 100 Hz 26⇠52

SOAP on 40⇠500 Hz 9.9

Our method . 100 Hz 43.9

FIG. 4. Classification results for test data containing only line
noise with Gaussian noise. For any amplitude, the fraction
of correctly classified events is about 60% (green diamonds).
The misclassification as the MixAstroLine class (red trian-
gles) occurs for 40% of test data. The number of misclassifica-
tions as the Null class (blue circles) and the Astrophysical
class (orange squares) are almost zero. Their markers are
overlapped.

shows the classification result for the test data of the
LineNoise class as a function of the line noise amplitude
log10 ĥ

line
0 . The classification results are almost constant

for any value of log10 ĥ
line
0 . We can interpret this result

as follows: we have injected line noise events with ampli-
tudes much larger than the Gaussian noise. Therefore,
the overall amplitude of the line noise would disappear
by normalization (see Eq. (3.2)), with the result that the
sensitivity of the CNN does not depend on the line noise
amplitude, as shown in Fig. 4.
While the CNN can discriminate the presence and the

absence of a line, it cannot find the astrophysical signal
when line noise contaminates. As shown in Fig. 2, line
noise is misclassified as the MixAstroLine with the false

Rough comparison
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Quantitatively, the frequency width of a bin is

�f =
1

Tseg
' 4.88⇥ 10�4Hz . (4.5)

The frequency change from the initial time across Tdur

can be estimated as

�f ⇠ Tdurḟ ⇠ 10�4Hz

 
ḟ

10�11Hz/sec

!
. (4.6)

Roughly speaking, if �f . �f , the signal power is still
contained in one frequency bin. Thus, we expect that
the CNN is applicable with comparable accuracy to that
achieved in the ḟ = 0 case. On the other hand, if
�f . �f , the signal power dissipates into several fre-
quency bins. Thus, the CNN’s performance degrades
when |ḟ | & 10�11Hz/sec.

V. COMPUTATIONAL COST

In this section, we evaluate the computational cost of
each processing step. First, we estimate the computa-
tional cost of the preprocess. The most expensive part
of the preprocess is the SFT for making the spectro-
gram and the Fourier transform to obtain a set of vec-
tors {Sak}. We assume that the cost of the time resam-
pling is negligible compared to the SFT and the Fourier
transform. For each grid point, we perform the SFT and
the Fourier transform. The computational cost of taking
SFTs can be estimated by

NSFT = Nseg · 5fsTseg log2[fsTseg] . (5.1)

Here, we evaluate the number of data points contained
in an SFT segment as fsTseg. Using the values listed in
Tab. I, we estimate

NSFT ' 1.80⇥ 1012 , (5.2)

in the unit of the number of floating point operations.
Similarly, the computational cost of the Fourier trans-
form for achieving a set of vectors {Sak} can be estimated
as

NFourier = Nbin (5Nseg log2 Nseg)

' 1.09⇥ 1011 . (5.3)

Combining Eqs. (5.1) and (5.3), we obtain the computa-
tional cost of the preprocess,

Npreprocess = Ngrid(NSFT +NFourier)

' 1.07⇥ 1019 . (5.4)

We evaluate the computational time of the CNN by ex-
trapolating the measured value for a small subset consist-
ing of the test data. With a single GPU (GTX1080Ti),
we measure the computational time to process 105 data

TABLE VII. Comparison of the computational time of the
standard methods and our method. We estimate the core-
hour with the spec of Intel E5-2670; the clock frequency is
2.6 GHz, eight operations per clock leading to the compu-
tational speed of 20.8 GFlops per core. This computational
time includes only floating-point operations. We take these
values from [25], except that the computational time of SOAP
is taken from [54]. We do not consider input/output (I/O)
time.

Method core-hour

FrequencyHough 9⇥ 106

SkyHough 2.5⇥ 106

Time-domain F-statistic 2.4⇥ 107

SOAP 1� 2⇥ 102

Our method 1.4⇥ 105

five times. We obtained their averaged time of 8.8742
sec and the standard deviation of 0.0237 sec. The total
number of the vectors {Sak} to be processed is

Nvec = Ngrid ·Nbin = 1.15⇥ 1012 . (5.5)

Therefore, the estimated time to process all vectors is

TCNN ' 1.02⇥ 108 [sec] . (5.6)

Although this is longer than the total duration Tdur by an
order of magnitude, we expect this can be suppressed to
a negligible level by taking into account the development
of hardware and the use of multiple GPUs in parallel.
[64]
In Table VII, we compare the computational cost, in

units of core-hours, of our method to that from the stan-
dard all-sky search pipelines employed in LIGO/Virgo’s
second observing run [25] . As in [25], we assume the
hardware Intel E5-2670 that has a clock frequency of 2.6
GHz and carries out eight floating-point operations per
clock. The computational speed is 20.8 GFlops per core.
Using Eq. (5.4), we estimate the computational time by

Npreprocess

20.8 [GFlops]
' 1.4⇥ 105 [corehr] . (5.7)

It shows that our method is computationally more e�-
cient by one or two order of magnitude than the standard
methods in which deep learning is not employed. Again,
we stress that the parameter region and the duration of
the strain data are di↵erent depending on the method.
Before ending this section, we mention how the com-

putational cost of the preprocess depends on the various
parameters governing our method. We focus on three pa-
rameters: the phase resolution ��⇤, the duration of the
SFT segment Tseg, and the upper bound of the frequency
band we explore fup. Figure. 8 shows the computational
cost of the preprocess with various values of ��⇤, Tseg,
and fup. To create this figure, we assume that the sam-
pling frequency is set to fs = 10fup. From this figure,

Sensitivity Computational cost (CPU)

✓Intel E5-2670 8 operations/clock, 2.6GHz -> 20.8GFlops/core
✓Simulated data for our method, observational result for other methods.
✓The parameter region and the data duration are different depending on 

the method

It can be expected to be decreased by
(i) the improvement of hardware, (ii) the use of multiple GPUs, (iii) optimize params.

14

in the unit of the number of floating point operations.
Similarly, the computational cost of the Fourier trans-
form for achieving a set of vectors {Hak} can be estimated
as

NFourier = Nbin (5Nseg log2 Nseg)

' 1.09⇥ 1011 . (6.3)

Combining Eqs. (6.1) and (6.3), we obtain the computa-
tional cost of the preprocess,

Npreprocess = Ngrid(NSFT +NFourier)

' 1.07⇥ 1019 . (6.4)

We evaluate the computational time of CNN by extrap-755

olating the measured value for a small subset consisting756

of the test data. With a single GPU (GTX1080Ti), we757

measure the computational time to process 105 data five758

times. We obtained their averaged time of 8.8742 sec and759

the standard deviation of 0.0237 sec. The total number760

of the vectors {Sak} to be processed is761

Nvec = Ngrid ·Nbin = 1.15⇥ 1012 . (6.5)

Therefore, the estimated time to process all vectors is762

TCNN ' 1.02⇥ 108 [sec] . (6.6)

Although this is longer than the total duration Tdur by763

an order of magnitude, we can expect this can be sup-764

pressed to a negligible level by taking into account the765

development of hardware and the use of multiple GPUs766

in parallel.767

The expected number of candidates, which are selected768

by the CNN, is denoted by Ncand. The candidates can769

be divided into two types: from the frequency bins con-770

taminated by line noise and free from line noise. For the771

frequency bin being free from line noise, the false alarm772

probability can be set to773

FAP1 = 0.001 , (6.7)

with respecting the result shown in Table. V. The criteria774

for the false alarm probability can be relaxed for the data775

contaminated by line noise, because the contaminated776

data is not the main portion of the data. Hence, we777

adopt778

FAP2 = 0.05 . (6.8)

All frequency bins of SFT can be divided by whether a779

frequency bin is contaminated by line noise. A single line780

noise contaminates the several frequency bins because of781

the Doppler modulation caused by the time resampling.782

The modulation amplitude is denoted by �f and is esti-783

mated by784

�f ⇠ 2⇡fline
RES⌦�

c
, (6.9)

with fline = 100 Hz. The number of frequency bins con-785

taminated by a line noise is evaluated786

ncont =
�f

�f
' 1.34⇥ 102 . (6.10)

We denote the number of the line noises by Nline. The787

total number of contaminated frequency bins is788

Ncont = Nline ⇥ ncont ' 1.34⇥ 104
✓
Nline

100

◆
. (6.11)

The number of the vectors {Hak} is given by NgridNbin.789

For the vectors with the contaminated frequency bins,790

the false alarm probability FAP2 is applied. For others,791

FAP1 is used. Therefore, the expected number of the792

candidate vectors is793

Ncand = Ngrid {FAP1(Nbin �Ncont) + FAP2Ncont} .

(6.12)
Using the values given in Eqs. (6.7), (6.8) and (6.11), we794

get795

Ncand ' 4.85⇥ 109 . (6.13)

The coherent matched filtering analysis [16] follows the796

candidate selection by CNN. Each vector Sak is charac-797

terized by the frequency bin k. It means that the possi-798

ble frequency range of the signal is narrowed down to the799

frequency range shown in Eq. (4.1). Therefore, we can800

use the heterodyning and the downsampling technique to801

reduce the data points [62]. The sampling frequency is802

reduced to �f . The computational cost of the coherent803

matched filtering can be estimated by that of the Fourier804

transformation, i.e.,805

5Tdur�f log2[Tdur�f ] . (6.14)

We need another set of grid points finer than that used806

in the preprocessing. Each grid point covers the region807

with the area of808

(�✓)2coh ⇠
✓

�gw

2RES

◆2

. (6.15)

Therefore, the number of the finer grid points is esti-
mated by

Ngrid,coh = Ncand · 4⇡

Ngrid
· 1

(�✓)2coh
' 7.01⇥ 1014 . (6.16)

Finally, we obtain the estimated computational cost of
the coherent matched filtering as

Ncoh = Ngrid,coh · 5Tdur�f log2[Tdur�f ]

' 1.25⇥ 1020 . (6.17)

O2 observation paper [23] shows the computational809

time of the standard methods. In Table VII, we sum-810

marize and compare them to our method. The computa-811

tional time is compared in terms of core-hour. As in [23],812

Roughly estimated computational time for GPU

TSY & Tanaka, PRD103, 084049 (2020) 
TSY et al., PRD106, 024025 (2022)

Comparable or better sensitivity
w/ O(10-100) speed up

<latexit sha1_base64="3uOaOw5cj/Y4+ytPuCx/g0NawOs="></latexit>

D95% =
p

Sn/h
95%
0



Results for non-zero df/dt
We tested our neural network for the 
data with non-zero df/dt, although the 
training data have no df/dt.

The CNN seems good up to 10-12Hz/sec, 
where

(df/dt)(Tobs) ~ (Tseg)-1 

For |df/dt| > 10-12Hz/sec, the signal 
cannot be contained into one frequency 
bin even after the preprocessing.
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FIG. 5. False alarm probabilities as a function of the thresh-
old pth. The horizontal axis corresponds to pth. The vertical
axis shows the fraction of LineNoise events which are mis-
classified as MixAstroLine. The dashed lines and the solid
lines respectively present the cases of log10 ĥ

line
0 = 0.0 and

1.0. Black horizontal line corresponds to the misclassification
probability of 10%. If we set pth = 1� 10�6, we can suppress
the false alarm probability less than 10%.

alarm probability of ⇠ 40%. The false alarm probabil-
ity could be suppressed by changing the detection crite-
rion. As stated in the Sec. III, we define a “detection”
as when the predicted probability of MixAstroLine (or
Astrophysical) class dominates others. Here, we intro-
duce a new criterion, given by

pth  pMix , (4.3)

where pMix is the CNN predicted probability of the
MixAstroLine class. Figure 5 shows the false alarm prob-
abilities with various values of pth. In order to achieve
a false alarm probability that is less than 10% for data
contaminated by line noise, we need to set pth = 1�10�6.
This detection threshold is used in the rest of the paper.

Figure 6 shows the detection e�ciency of the
MixAstroLine signals Comparing to the case where the
line noise is absent, the e�ciency is degraded because of
the line noise. We estimate the sensitivity depth

D
95%

' 3.62 for log10 ĥ
line
0 = 0.0 , (4.4)

which is only ⇠ 8.2% of that of the line noise is absence
(see Eq (4.2)).

Realistic gravitational-wave sources naturally have
intrinsic frequency evolution as they are modeled in
Eq. (2.2). Therefore, we test the 4-class CNN
also for signals with non-zero ḟ . Di↵erent dat-
sets are generated, each with the fixed ḟ : ḟ =
�10�13

,�10�12
,�10�11

,�10�10 and �10�9Hz/sec. For
each ḟ , we prepare 2000 test data and evaluate the de-
tection probability, and show the classification results in
Fig. 7. For the data with |ḟ | smaller than 10�12Hz/sec,

FIG. 6. Detection probabilities of an astrophysical signal co-
existing with line noise. The horizontal and vertical axes
show the normalized amplitudes of astrophysical signals and
line noise, respectively. In this figure, we set the threshold
pth = 1 � 10�6. In most regions, the detection probabilities
are less than 50%. The maximum detection probability is
96.1% at (log10 ĥ0, log10 ĥ

line
0 ) = (�0.5, 0.0).

FIG. 7. Detection probability of the signals with nonzero
frequency derivatives. For ḟ = �1.0 ⇥ 10�13 Hz/sec which
are shown by orange squares, the sensitivity is not degraded
compared with ḟ = 0 case (blue circles). The detection prob-
ability starts to diminish from ḟ = �1.0⇥10�12 Hz/sec (green
up triangles). For |ḟ | . 10�11 Hz/sec, the sensitivity signifi-
cantly reduced.

the CNN’s performance is not much degraded. Espe-
cially for ḟ = �10�13Hz/sec, the detection probability
is comparable to that of ḟ = 0 case for all amplitudes.
On the other hand, the performance becomes worse as
the frequency derivative exceeds |ḟ | = 10�11Hz/sec. It
can be understood as follows: as explained in Sec. II, the
input data should contain the signal power with an SFT
frequency bin. With nonzero ḟ , however, the frequency
track might cross a number of frequency bins, spread-
ing the signal power over multiple frequency bins. We,
therefore, expect that signals with higher ḟ cannot be
detected as e�ciently by the CNN as those with lower ḟ .

Amplitude log10 ĥ0
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TSY & Tanaka, PRD103, 084049 (2020) 
TSY et al., PRD106, 024025 (2022)



Extension to directed search

• We assume the grid point exactly matches with the source position.

‣ In directed search, we can use the information about the source position.

‣ However, the grid still can slightly deviate from the true source position.

• We use grids on df/dt to remove the effect of df/dt from the frequency evolution.

‣ The grid width will be determined from the computational cost.

• We enable CNN to take multiple frequency bins as an input.

‣ Input data become 2-dimensional image.

‣ It may allow incomplete subtraction of the Doppler effects and/or the effect of df/dt. 



Proposed algorithm
Place the coarse grid points on the sky and on df/dt

For {ngrid, (df/dt)grid}:

Remove doppler modulation and frequency evolution by df/dt

Make spectrogram

For frequency band:

Perform Fourier transform over all time for each frequency bin

Give transformed data to neural network and get prediction

If prediction = “CGW exists”:

Store {ngrid, (df/dt)grid, frequency bin} as a candidate

1

2

3

4

5

6

7

8

9

Preprocess

Neural network



Dataset settings (diff)
• fgw is sampled from uniform distribution on [10, 1000] Hz.

• df/dt is sampled from log-uniform distribution on [-10-8, 10-8] Hz/sec.

• The source direction and the grid direction coincide (CasA).

• Tseg = 65536 sec or 262144 sec

• Dataset consists of 2 classes, {Null, Astrophysical}

• Input is two dimensional image: size (height, width) = (200, 512) or (1200, 128)

• Random inclination angle, polarization, initial phase

•  (→ amplitude of signal : 0.01 ~ 10.0)

• # of data, training : validate = 10000 : 1000. The dataset is augmented by generating random Gaussian noise for every 
iteration.

log10 ĥ0 ∈ [−2.0,1.0]



Detection efficiency
• Grid width on df/dt = 10-11 Hz/sec

• Orange line: Tseg = 65536 sec

• Blue line: Tseg = 262144 sec

• Black line:  = -1.86=95% upper 
limit of CasA at 500Hz with early O3 
data (ref: LIGO&Virgo, PRD105, 
082005 [2022])

log10 ĥ0
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Tseg Nseg image size

Dataset1 216 sec 512 (512, 200)

Dataset2 218 sec 128 (128, 1200)

TABLE III. Parameters of datasets.

that the change in the signal morphology is not significant if we change fgw by H�f . Then, we can take the approach
in which we generate images whose sizes are larger than the input size of CNN and randomly crop the images at every
iteration of the training process. We train CNN to detect the signal whenever it is located in one image.

The height of each image is higher than that of the input image indicated in Tab. III.

FIG. 9. Sensitivity of CNN for the data with the long and the short segment durations. The blue and orange lines respectively
show the sensitivities for the blue and short segments as a function of the normalized amplitude of GWs. The black vertical
line shows the upper limit of CGWs from Cassiopeia A obtained by LVK’s O3.

Figure. 9 compares the sensitivities for the data with the long and the short segment durations. CNNs achieve a
sensitivity comparable to the current constraint achieved by LVK’s O3. This

VIII. LINE NOISE GENERATION

I generate line noise.

A. Perfectly stationary line

The line noise is

hline(t; fline) = hline,0 cos(2⇡flinet+ �line,0) . (8.1)

Carrying out the resampling with the grid ng, we get

hline,re(⇣; fline,ng) = hline,0 cos(2⇡flinet(⇣) + �line,0) . (8.2)

Remind that ⇣ satisfies

⇣ = t+
r(t) · ng

c
. (8.3)

Multiplying the factor exp
h
�i⇡ḟa⇣2

i
, we get the demodulated strain

hline,de(⇣) = hline,re(⇣)e
�i⇡ḟa⇣

2

. (8.4)
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Computational cost
The algorithm is controlled by two parameters: 
SFT segment duration and grid width on df/dt.

Upper: Computational time for preprocess

Lower: Computational time for CNN

Assuming 8.8742 x 10-5 sec/image which is 
used in our previous work

10

FIG. 7. Height of an image as a function of �ḟ (the grid width on ḟ). Here, we set ↵ = 20. If H calculated by Eq. (6.1) is less
than one, I set them at one. For �ḟ . 4⇥ 10�13Hz/sec, the height becomes one. This means that after subtracting ḟ with the
grid width of �ḟ . 4⇥ 10�13Hz/sec, the signal is accumulated into one frequency bin.

FIG. 8. Computational cost of CNN. Here, we set ↵ = 20. We assume the computational speed of CNN PCNN = 8.8742⇥ 10�5

sec/image, which is used in our previous work. The black solid line indicates 106 sec.

We have N1 spectrograms. Therefore, the number of images Nimage that CNN analyzes is

Nimage = N1 ·
(fgw)max � (fgw)min

↵�ḟTobs

. (6.3)

Assuming the computational speed PCNN of CNN, we get the computational time of CNN by

TCNN = NimagePCNN . (6.4)

Figure 7 shows the height H of an image. For �ḟ & 2⇥ 10�10

VII. CNN PERFORMANCE

I tried two di↵erent segment duration, Tseg = 216sec and 218sec. Table. III shows that the parameters which are
used in the dataset generation. For each dataset, we generate 11,000 images without noise injection. We divide 11,000
images into two sets in which 10,000 images are used for training and 1,000 for validation.

As explained in the previous section, we will divide the whole image into small images with an overlap of half the
height of a small image. Thus, we train the CNN to detect the signal whenever it locates in the image. We assume

Preliminary



Summary

• We proposed the deep learning method for all-sky search with double Fourier 
transform. It has the comparable sensitivity to other pipelines with cheaper 
computational cost though the comparison is very rough.

• We are going to extend our algorithm for the directed search. Based on the 
preliminary test in which a signal is injected into simulated Gaussian noise, our 
method can have a comparable sensitivity to the current pipelines.

• To be implemented: data gaps, realistic line models (e.g., fluctuating frequency), non-
stationarity of PSDs, multiple detectors



Appendix



Classification problem
NN returns four-dimensional vectors in which 
each component takes value from 0 to 1 and their 
sum equals to unity.

1-of-K representation: standard way to label the 
data for classification problem

Loss function: measure the difference between the 
answer and the NN prediction.

Maybe too technical

<latexit sha1_base64="Jke/oXnzNLg1HYGMTFx8p6r6tag="></latexit>

ppred = (p1, p2, p3, p4) ,
4X

i=1

pi = 1
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(predicted class) = argmaxi=1,2,3,4pi
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L(p, t) = �
4X

i=1

ti ln pi
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ti =

(
1 if ith class is true

0 otherwise



Convolutional neural network
• Convolutional neural network is advantageous for extracting local patterns.

• Pick up a small patch from an image and convolute it with filters.

• Repeating this process for many different patches, we get feature maps.

• e.g., colored image = 2-dimansional pixels with 3channels (RGB)



Results
For Astrophysical class

Sensitivity depth = 1
ĥ95%

0

≃ 43.9
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FIG. 3. Detection e�ciency of the CNN for astrophysical sig-
nals injected into Gaussian noise. The horizontal axis shows
the logarithm of the amplitude, and the vertical axis is the
fraction of events. Orange squares indicate the detection
probability of astrophysical signals. For log10 ĥ0 & �1.64,
the detection probability exceeds 95%. The detection prob-
ability decreases as the amplitude decreases. The results of
the LineNoise class (green diamonds) and the MixAstroLine
class (red triangles) are overlapped.

as

D :=

p
Sn(fk)/1Hz�1

h0
= (ĥ0)

�1
. (4.1)

In terms of the sensitivity depth, our CNN has a sensi-
tivity of

D
95%

' 43.9 . (4.2)

The LIGO/Virgo collaboration has carried out all-sky
searches for isolated neutron stars using data from
LIGO/Virgo’s third observation data [30], which results
in upper limits on the gravitational-wave strain ampli-
tude. We compare the sensitivity depths of the standard
methods and our method in Table. VI. It shows that
our neural network can outperform the Time-domain F-
statistic and the SOAP. Furthermore, our method has
comparable sensitivity to the FrequencyHough and the
SkyHough. We emphasize, however, that they search
over di↵erent parameter spaces: the standard method
surveys a wide range of ḟ , while our method focuses on
quasi-monochromatic waves. The duration of the signal
is also di↵erent; O3 data has the duration of ⇠ 11 months
⇠ 2.9⇥107 sec, and our method assumes that signals last
for 224 ⇠ 1.6⇥ 107 sec.

Whereas the Astrophysical class and the Null class
are classified correctly, the events contaminated by the
line noise are not. The false alarm probability that the
line noise data is classified in the MixAstroLine class is
estimated to be 39.2%. To test the CNN for line noise
data, we prepare eleven data sets corresponding to dif-
ferent amplitudes of the line noise. Each data set con-
tains 2000 lines injected into Gaussian noise. Figure 4

TABLE VI. Comparison of the sensitivity depths of the stan-
dard all-sky search methods and our method. For Frequency-
Hough and Time-domain F-statistic, the upper limits on the
amplitude h95%

0 are presented in [30]. We converted them into
D

95% assuming
p

Sn(f) = 5.2⇥ 10�24[Hz�1] that is shown in
Fig. 6 of [30]. For SkyHough and Time-domain F-statistic,
we read the values respectively from Fig. 11 and Fig. 13 of [30]
that show their upper limit on the amplitude. We stress that
the parameter region and the strain duration are di↵erent de-
pending on the method.

Method Frequency band D
95%

FrequencyHough at 100 Hz 42⇠ 43

SkyHough at 116.5 Hz 47.2

Time-domain F-statistic at 100 Hz 26⇠52

SOAP on 40⇠500 Hz 9.9

Our method . 100 Hz 43.9

FIG. 4. Classification results for test data containing only line
noise with Gaussian noise. For any amplitude, the fraction
of correctly classified events is about 60% (green diamonds).
The misclassification as the MixAstroLine class (red trian-
gles) occurs for 40% of test data. The number of misclassifica-
tions as the Null class (blue circles) and the Astrophysical
class (orange squares) are almost zero. Their markers are
overlapped.

shows the classification result for the test data of the
LineNoise class as a function of the line noise amplitude
log10 ĥ

line
0 . The classification results are almost constant

for any value of log10 ĥ
line
0 . We can interpret this result

as follows: we have injected line noise events with ampli-
tudes much larger than the Gaussian noise. Therefore,
the overall amplitude of the line noise would disappear
by normalization (see Eq. (3.2)), with the result that the
sensitivity of the CNN does not depend on the line noise
amplitude, as shown in Fig. 4.
While the CNN can discriminate the presence and the

absence of a line, it cannot find the astrophysical signal
when line noise contaminates. As shown in Fig. 2, line
noise is misclassified as the MixAstroLine with the false
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FIG. 5. False alarm probabilities as a function of the thresh-
old pth. The horizontal axis corresponds to pth. The vertical
axis shows the fraction of LineNoise events which are mis-
classified as MixAstroLine. The dashed lines and the solid
lines respectively present the cases of log10 ĥ

line
0 = 0.0 and

1.0. Black horizontal line corresponds to the misclassification
probability of 10%. If we set pth = 1� 10�6, we can suppress
the false alarm probability less than 10%.

alarm probability of ⇠ 40%. The false alarm probabil-
ity could be suppressed by changing the detection crite-
rion. As stated in the Sec. III, we define a “detection”
as when the predicted probability of MixAstroLine (or
Astrophysical) class dominates others. Here, we intro-
duce a new criterion, given by

pth  pMix , (4.3)

where pMix is the CNN predicted probability of the
MixAstroLine class. Figure 5 shows the false alarm prob-
abilities with various values of pth. In order to achieve
a false alarm probability that is less than 10% for data
contaminated by line noise, we need to set pth = 1�10�6.
This detection threshold is used in the rest of the paper.

Figure 6 shows the detection e�ciency of the
MixAstroLine signals Comparing to the case where the
line noise is absent, the e�ciency is degraded because of
the line noise. We estimate the sensitivity depth

D
95%

' 3.62 for log10 ĥ
line
0 = 0.0 , (4.4)

which is only ⇠ 8.2% of that of the line noise is absence
(see Eq (4.2)).

Realistic gravitational-wave sources naturally have
intrinsic frequency evolution as they are modeled in
Eq. (2.2). Therefore, we test the 4-class CNN
also for signals with non-zero ḟ . Di↵erent dat-
sets are generated, each with the fixed ḟ : ḟ =
�10�13

,�10�12
,�10�11

,�10�10 and �10�9Hz/sec. For
each ḟ , we prepare 2000 test data and evaluate the de-
tection probability, and show the classification results in
Fig. 7. For the data with |ḟ | smaller than 10�12Hz/sec,

FIG. 6. Detection probabilities of an astrophysical signal co-
existing with line noise. The horizontal and vertical axes
show the normalized amplitudes of astrophysical signals and
line noise, respectively. In this figure, we set the threshold
pth = 1 � 10�6. In most regions, the detection probabilities
are less than 50%. The maximum detection probability is
96.1% at (log10 ĥ0, log10 ĥ

line
0 ) = (�0.5, 0.0).

FIG. 7. Detection probability of the signals with nonzero
frequency derivatives. For ḟ = �1.0 ⇥ 10�13 Hz/sec which
are shown by orange squares, the sensitivity is not degraded
compared with ḟ = 0 case (blue circles). The detection prob-
ability starts to diminish from ḟ = �1.0⇥10�12 Hz/sec (green
up triangles). For |ḟ | . 10�11 Hz/sec, the sensitivity signifi-
cantly reduced.

the CNN’s performance is not much degraded. Espe-
cially for ḟ = �10�13Hz/sec, the detection probability
is comparable to that of ḟ = 0 case for all amplitudes.
On the other hand, the performance becomes worse as
the frequency derivative exceeds |ḟ | = 10�11Hz/sec. It
can be understood as follows: as explained in Sec. II, the
input data should contain the signal power with an SFT
frequency bin. With nonzero ḟ , however, the frequency
track might cross a number of frequency bins, spread-
ing the signal power over multiple frequency bins. We,
therefore, expect that signals with higher ḟ cannot be
detected as e�ciently by the CNN as those with lower ḟ .
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range at a similar detection performance that was obtained
on the individual training frequencies. Furthermore, for the
T ¼ 105 s search, it seems quite feasible to train a single
network over the full frequency range directly, achieving
similar (albeit lower) performance to the “specialized”
networks trained on narrow frequency bands. On the
contrary for the T ¼ 106 s search the detection probability
of the “full-range” network drops up to 20 percentage
points against the “specialized” networks.

C. Generalization in spindown _f

A further interesting aspect to consider is how far in
spindown _f the performance network extends beyond the
range that it was trained on, i.e., _f ∈ ½−10−10; 0# Hz=s as
given in Table I. This is shown in Fig. 7. We see that the
DNN detection probability remains high even for

spindowns that are 1–2 orders of magnitude larger than
the training range. In particular, networks trained at higher
frequencies seem to have a wider generalization range in
spindown, which makes sense as they would have learned
to recognize signal shapes with larger Doppler broadening,
a qualitatively similar effect to having more spindown.

D. Generalization in signal strength

Another important issue is how well the DNN general-
izes for signals of different strength D, given that we only
trained each network at one specific depth D90%

training, an
estimate of the matched-filtering depth. The results of this
test are shown in the efficiency plots of Fig. 8. We see that
generally the dependence of pdetðDÞ for the DNNs seems to
be quite similar to that of matched filtering, but shifted to its
overall (lower) performance level.

(a) (b)

FIG. 5. ROC curve: Detection probability pdet versus pfa for the 105 s search (left) and the 106 s search (right). The solid red lines
indicate the measured ROC curves for matched filtering.

(a) (b)

FIG. 6. Detection probability pdet versus injection frequency f for networks trained at five different frequencies and for a network trained
with signals drawn from the full frequency range (solid black line). The dashed vertical lines mark the respective training frequencies for the
five “specialized” networks. The horizontal dashed line represents the coherent matched-filtering detection performance.
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infeasible. Instead we characterize the matched-filter
search on only five narrow frequency bands of width Δf ¼
50 mHz starting at frequencies f0 ¼ 20, 100, 200, 500 and
1000 Hz, yielding a total of ten representative test cases.

B. WEAVE matched-filtering sensitivity

For the matched-filter search we use the recently
developed WEAVE code [39], which implements a state-
of-the-art CW search algorithm [40] based on summing
coherent F statistics [41,42] over semicoherent segments
on optimal lattice-based template banks [43,44]. This
code can also perform fully coherent (i.e., single-segment)
F -statistic searches, which we use for the present proof-of-
principle study. The benchmark search definitions in
Table I are chosen in such a way that a fully coherent
search is still computationally feasible. This yields a
simpler and cleaner comparison than using a semicoherent
search setup, as we can easily design near-optimal search
setups (by using relatively fine template banks) without the
extra complication of requiring costly sensitivity optimi-
zation at fixed computing cost [13,40,45].
The WEAVE template banks are characterized by a

maximal-mismatch parameter m, which controls how fine
the templates are spaced in parameter space. These are
chosen as m ¼ 0.1 and m ¼ 0.2 for the two searches with
T ¼ 105 and T ¼ 106 s, respectively. The reason for
choosing the larger mismatch value (i.e., coarser template
bank) in the T ¼ 106 s case is to keep the computing cost
of the corresponding test cases still practically manageable,
as the coherent cost scales with the mismatch parameter as
∝m2 for a four-dimensional template bank [see e.g.,
Eq. (24) in [43]].
By repeated injections of signals in the data and recovery

of the loudest F -statistic candidate in the template bank,
one can measure the relative SNR loss μ compared to a
perfectly matched template. The resulting measured aver-
age mismatch hμi quantifies in some sense how close to
“optimal” the matched-filter sensitivity will be (compared
to an infinite computing cost search with m ¼ 0), and is
found as hμi ∼ 5% and hμi ∼ 11%, respectively for the two
searches.
Using the template-counting and timing models

[39,46,47] for WEAVE and the resampling F statistic, we

can estimate the total number of templates and the
corresponding total runtime for these two benchmark
searches as ∼78 and ∼45000 days on a single CPU core,
respectively. Table II provides a summary of the WEAVE

search parameters and characteristics.
In order to estimate the sensitivity for the ten test cases

defined in the previous section (i.e., five frequency slices of
Δf ¼ 50 mHz for each search of T ¼ 105 and T ¼ 106 s,
respectively), we first determine the corresponding detec-
tion thresholds F th on the F statistic corresponding to a
false-alarm level of pfa ¼ 1% for each case. This is done
by repeatedly (105 times for T ¼ 105 s, and ∼104 times for
T ¼ 106 s, respectively) performing each search over
Gaussian noise and thereby recording the distribution of
the loudest candidate, which yields the relationship
between the threshold and false-alarm level. The corre-
sponding detection probability pdet for any given signal
population of fixed D is obtained by injecting signals into
Gaussian noise data and measuring how many times the
loudest candidate exceeds the detection threshold. By
varying the injected D we can eventually find D90% for
the desired pdet ¼ 90% (see e.g., Ref. [10] for more details
and discussion of this standard “upper limit” procedure).
By a final injectionþ recovery Monte Carlo we can verify
that the achieved WEAVE detection probability for the
quoted thresholds and signal strengths D90% in Table III
is pdet ∼ 90–91%, which is sufficiently accurate for our
present purposes.
The sky template resolution grows as ∝f2 as a function

of frequency f, resulting in a corresponding increase in the
number of templates at higher frequency. This increases the
number of “trials” in noise at the higher-frequency slices,
which results in a corresponding increased false-alarm
threshold (chosen in order to keep the false-alarm level
at pfa ¼ 1%) as well as an increased computing cost, shown
in Table III.

TABLE II. WEAVE parameters and characteristics for the two
searches.

Name T ¼ 105 s T ¼ 106 s

Mismatch parameter m 0.1 0.2
Average SNR loss hμi 5% 11%
Number of templates N 4 × 1011 3 × 1014

Search time [single CPU core] 6.7 × 106 s 3.9 × 109 s

TABLE III. WEAVE characteristics for the ten test cases, each
covering a frequency “slice” of Δf ¼ 50 mHz, starting at f0, of
the full searches defined in Table I. The detection thresholds F th
correspond to a false-alarm level of pfa ¼ 1% over the band Δf.
CPUΔf denotes the search time in seconds for the respective Δf
band on a single CPU core.

f0 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T ¼ 105 s
N Δf 5 × 105 1 × 107 5 × 107 3 × 108 1 × 109

CPUΔf [s] 0.1 4.9 19 2.3 × 102 1.7 × 103

F thðpfaÞ 20.6 23.6 25.1 27.0 28.6
T ¼ 106 s
N Δf 3 × 108 8 × 109 3 × 1010 2 × 1011 8 × 1011

CPUΔf [s] 45 3 × 103 1.4 × 104 1.6 × 105 6.9 × 105

F thðpfaÞ 27.5 31.1 32.5 34.2 36.2
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Conversely we also calculated the “upper limit” sensi-
tivity depth D90%

DNN where the network achieves 90%
detection probability (see Table VI). These values corre-
spond to a sensitivity loss of 5–21% (as a function of
frequency) for the T ¼ 105 s search, and 26–66% for the
T ¼ 106 s search.

E. Timing

The total amount of computational resources needed, is
another interesting point of comparison to a matched-filter
search. The total search times for using the matched-filter
WEAVE method on the two benchmark searches can be
found in Table II.
For the DNN the total computation time consists of two

parts: training time and prediction time (i.e., calculating
one output statistic psignal for one input data vector). The
training time for the two network architectures is ∼1 and
∼10 d per network for the T ¼ 105 and T ¼ 106 s cases,
respectively. Only part of this time is actually spent on
training the network; another part is spent calculating the
detection probability of the network every few epochs in
order to monitor the progress of training.
The prediction time in comparison is almost negligible.

The smaller networks for the T ¼ 105 s cases require
∼3 ms to process one input window. The larger networks
for the T ¼ 106 s cases need ∼10 ms per prediction. Each
search requires a different number of sliding input windows
to cover the whole frequency range, and the total search
time can be found in Table VII.
An important detail to note in a direct comparison

between matched filtering and a pure classifier “signal”
versus “noise” DNN search is that matched filtering yields
far more information on outlier candidates that cross the
threshold. In particular, its signal parameters will be well
constrained already, allowing a follow-up search to be
performed in a small region of parameter space. The DNN
classifier, on the other hand, would flag input windows

(of width ΔfIW) in frequency as outliers to be followed up.
Assuming we follow up two input windows per candidate,
one can estimate the total expected follow-up cost (using
matched filtering) as a fraction 2ðΔfIW=ΔfÞpfa of the total
matched-filtering cost (see Table II), where pfa ¼ 1% is the
false-alarm probability per Δf ¼ 50 mHz band.
Therefore even including all the training time and

assuming a matched-filter follow-up, the DNN search would
still seem to require less computing power. At the present
stage, however, we cannot realize this potential benefit given
that our DNN search so far is far less sensitive overall.

V. DISCUSSION

In this work we have shown that deep learning (DNNs)
can in principle be used to directly search for CW signals in
data, at substantially faster search times than matched
filtering. For the hand-optimized network architecture
studied here, the DNN detection probability (at fixed false
alarm) is found to be somewhat competitive (88–73% over
the full frequency range) with matched filtering (90%) for
short data spans of T ∼ 1 day, while the detection perfor-
mance falls short (69–13%) for a longer data span of
T ∼ 12 days. On the plus side, the DNN search shows a
surprising ability to extend further in frequency and spin-
down than it was trained for, and is generally much faster in
search performance than matched filtering.
In order to make this a competitive search method, we

can identify a few necessary next steps:
(1) Extend to a multidetector search.
(2) Find better networks with a comparable detection

probability to existing methods in Gaussian noise.
(3) Train for parameter estimation in addition to pure

classification in order to reduce follow-up cost of
candidates.

(4) Test how a network trained on Gaussian noise
performs on real detector data. Given the network’s
ability to generalize, one might expect problems if
non-Gaussian artifacts are identified as signals. On
the other hand, training a network on real detector
noise should alleviate that problem.

Overall we think that deep learning has the potential to
become a useful CW search tool, but there is substantial
further research and development effort required in order to
achieve this.
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TABLE VI. Sensitivity depths D90%
DNN at a false-alarm level of

pfa ¼ 1% achieved by the network for the ten test cases. The
respective matched-filter depths can be found in Table IV.

D90%
DNN [Hz−1=2] f0 ¼ 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T ¼ 105 s 10.8 10.0 9.5 8.6 7.7
T ¼ 106 s 21.6 16.5 14.3 11.1 8.9

TABLE VII. DNN computing cost (in seconds) for training,
search and follow-up (using matched filtering). The respective
matched-filtering cost can be found in Table II.

Cost [s] Training Search Follow-up Total

T ¼ 105 s 4.3 × 105 58.8 2.2 × 104 4.5 × 105

T ¼ 106 s 4.3 × 106 196 6.5 × 107 6.9 × 107
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Assuming the computational speed PCNN of CNN, we get the computational time of CNN by

TCNN = NimagePCNN . (3.4)

Figure 3 shows the height H of an image. For ∆ḟ ! 2× 10−10

FIG. 3. Height of an image as a function of ∆ḟ (the grid width on ḟ). Here, we set α = 20. If H calculated by Eq. (3.1) is less
than one, I set them at one. For ∆ḟ " 4× 10−13Hz/sec, the height becomes one. This means that after subtracting ḟ with the
grid width of ∆ḟ " 4× 10−13Hz/sec, the signal is accumulated into one frequency bin.

FIG. 4. Computational cost of CNN. Here, we set α = 20. We assume the computational speed of CNN PCNN = 8.8742× 10−5

sec/image, which is used in our previous work. The black solid line indicates 106 sec.

Image size = (Height, Width)

Width = Nseg = Tobs / Tseg

Height = 20 ⋅
[Δ ·f ]Tobs

T−1
seg

Height of an image
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IV. WHAT DOES THE SIGNAL LOOK LIKE?

TABLE I. Parameters of test data

idx fgw [Hz] ḟ [Hz/s] �ḟn [Hz/s]

0 4.8908⇥ 102 2.1136⇥ 10�14 2.1136⇥ 10�14

1 4.4613⇥ 102 7.5165⇥ 10�10 1.65⇥ 10�12

FIG. 3. SFT of data 0. The normalized amplitudes (:= h0/
p
Sn) are 10�1.0 (left) and 10�2.0 (right).

FIG. 4. Data after second Fourier transformation (idx=0). The normalized amplitudes (:= h0/
p
Sn) are 10�1.0 (left) and

10�2.0 (right).

V. COMPUTATIONAL TIME

We assume that the e↵ect due to the detector’s motion is completely removed by using the knowledge of the source
location. So, the GW signal in the resampled strain data is modeled as

h(⌧) = A cos(�(⌧)) , �(⌧) = 2⇡fgw⌧ + ⇡ḟ⌧2 + �0 , (5.1)

where ⌧ is the source time, fgw is the GW frequency at the initial time, ḟ is the intrinsic frequency evolution, and �0

is the initial phase.

By multiplying exp
h
�i⇡ḟ⌧2

i
, we remove the e↵ect due to ḟ . Because we do not know the true value of ḟ a priori,

we place the uniform grid point in ḟ axis and find the optimal grid by analyzing the strain data that is multiplied
by the exp factor for each grid. We denote the search range of ḟ by [(ḟ)min, (ḟ)max] and the grid interval by �ḟ .
Therefore, the number of grid points N1 is

N1 =
(ḟ)max � (ḟ)min

�ḟ
+ 1 . (5.2)
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Example of an image

SFT image

SFT + double FT

image

log10 ĥ0 = − 1.0 log10 ĥ0 = − 2.0

Fgw = 489.08Hz, residual df/dt = 0.0


