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Introduction

Coherent searches:

e Computationally infeasible
e Highly sensitive

Semi-coherent searches:

e Computationally expensive, yet feasible
e Lesssensitive compared to coherent searches

Semi-coherent searches have higher sensitivity at the
same computational cost!



Deep Learning

e Reductioninsearch time
o Majority of computational cost is required for training
o Training with a small number of templates
e Improvement in sensitivity over semi-coherent searches
o Analyse the data coherently
e Robustness against noise artifacts
o Training networks to distinguish between instrumental lines and true signals



CW Search as a classification problem
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Labeled Dataset

e Large number of samples each for noise and
signal cases
Noise sample: simulated Gaussian noise; label O
Signal sample: simulated Gaussian noise + CW
signal with known parameters; label 1

e Choice of parameters for injected signals based
on the search.

e Noise generated dynamically at the time of
training
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All-sky Dataset

e 32768 templates each for training and validation

e Sky-position sampled isotropically from all over the sky

e Spin-down sampled from the range [-107%° |, 0] Hz/s

Dataset Frequency band (Hz) Sensitivity depth ( /VHz )
20 Hz [20, 20.05] 39.04
100 Hz [100, 100.05] 37.27
200 Hz [200, 200.05] 36.62
500 Hz [500, 500.05] 35.60
1000 Hz [999.95, 1000] 33.37
20 - 1000 Hz [20, 1000] 33.37




Preprocessing the input
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e Make aspectrogram from the time-series data.
e Frequency bandwidth: twice the maximum signal bandwidth
e Repeating Doppler modulation — Repeating pattern in the spectrogram
e Learnusing convolutional neural networks!



Network architecture
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e Kernel-size of convolutions: wide

enough to contain the widest possible

signal
e Power of signal is distributed in several
bins: difficulty to learn signal shape LAYER
increases with increase in width of the /\
signal
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e Use convolutions of different
kernel-sizes to learn signals with W

different widths CONCATENATE



Network output and training
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e Optimizer: Adam

e Training metric: detection
probability calculated with a
threshold corresponding to a value

of false-alarm probability (~0.75 %) _ ,’H
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Estimation of network threshold

e Comparison with WEAVE search:
o Coherent search
o Template bank parameters: N =4 x 10*, Mean SNR loss = 8%
o ThresholdsetatP_, = 1% per 50 mHz band.
e Set threshold on network output at the same false-alarm probability as the above search
for a fair comparison
e Network placements with a half-overlap covers the entire search band.
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Comparison of detection probability

Dataset This work Earlierowork [1]
Training (%) Validation (%) Testing (%) )
20 Hz 56.83 57.38 57.63 60.5
100 Hz 42.09 42.19 42.14 245
200 Hz 37.98 38.14 37.64 11.2
500 Hz 30.83 29.96 30.76 3.3
1000 Hz 27.88 28.16 28.35 0.7

20 - 1000 Hz 31.60 31.58 31.37 -

Network generalizes to CW signals with unknown parameters!

[1] C. Dreissigacker and R. Prix, Phys. Rev. D 102, 022005 (2020)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.022005

Comparison of 90% upper limits

Dataset

20 Hz

100 Hz

200 Hz

500 Hz

1000 Hz

20 -1000 Hz

Training ( /NHz )

26.29

21.22

19.77

17.71

16.08

16.70

This work
Validation ( /VHz)
26.33
21.21
19.79
17.62
16.12

16.70

[1] C. Dreissigacker and R. Prix, Phys. Rev. D 102, 022005 (2020)

Testing ( /VHz)
26.45
21.34
19.82
17.65
16.13

16.70

Earlier work[1]
(IWHz)
29.6
17.5
13.9
9.7

7.9
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.022005

Generalization in signal strength
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Network generalizes to CW signals with sensitivity depth different from training!
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Summary

e Wetrained neural networks to perform all-sky searches with a better performance than
previous networks

e Wedemonstrate network input and design properties that lead to efficient training and
good performance

e We demonstrate the capability of the network to generalize to a wider set of CW signals,
even after being trained on a small number of templates

e We show a method to compare the sensitivity of a neural network search to a matched filter
search.

e The next steps in this work are to analyse longer time-spans of data and to perform
parameter estimation.

Thank you!
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