Neural simulation-based inference of the neutron star equation of state directly from telescope spectra

Continuous gravitational waves and neutron stars

Len Brandes, Chirag Modi, Aishik Ghosh, Delaney Farrell, Lee Lindblom, Lukas Heinrich, Andrew W. Steiner, Fridolin Weber, Daniel Whiteson 19.06.2024

Neutron stars

- Neutron stars weight $M \sim 1 2M_{\odot}$ and have radii $R \sim 11 13$ km
- High baryon densities in core beyond terrestrial experiments
 - \rightarrow Constrain unknown physics of dense matter based on neutron star observations

[Brandes, Kaiser and Weise, Phys. Rev. D 108 (2023)]

Description of neutron stars

► Internal structure described by Tolman-Oppenheimer-Volkoff (TOV) equations

$$\frac{\partial P(r)}{\partial r} = -\frac{G_N}{r^2} \left(\varepsilon(r) + P(r) \right) \left(m(r) + 4\pi r^3 P(r) \right) \left(1 - \frac{2G_N m(r)}{r} \right)^{-1}$$

$$\frac{\partial m(r)}{\partial r} = 4\pi r^2 \varepsilon(r)$$
[Tolman, Phys. Rev. 55 (1939)] [Oppenheimer and Volkoff, Phys. Rev. 55 (1939)]

- ► Solution for given equation of state (EoS) $P(\varepsilon)$ and central energy density $\varepsilon(r = 0) = \varepsilon_c$
 - \rightarrow Solution for different ε_c yields (*M*,*R*)-relation

Neural SBI of the neutron star EoS directly from telescope spectra | Len Brandes

Equation of state

- ► EoS depends on the internal phases: phase transitions, crossover, ...
- Introduce general parametrization $P(\varepsilon, \lambda)$ that can describe variety of scenarios
 - \rightarrow Here: spectral parametrization with two parameters (λ_1 , λ_2)
- Bayesian inference of λ based on neutron star data ${\mathscr D}$

 $p(\lambda | \mathcal{D}) \propto p(\mathcal{D} | \lambda) \, p(\lambda)$

[Koio, AAPPS Bull, 31 (2021)]

[Lindblom, Phys. Rev. D 82 (2010)]

Previous + BW

Thermal X-ray spectra

- Thermal X-ray spectra s of low-mass binaries in quiescence (qLMXBs)
 - → Depend on mass-radius (M, R) and nuisance parameters $v = (N_H, d, \log(T_{eff}))$
 - \rightarrow Information on v from other observations
- Likelihood p(s|\u03c6, v) analytically intractable, inference in two steps: [Riley, Raaijmakers and Watts, MNRAS 478 (2018)]
 - 1. Infer (*M*, *R*) from telescope spectrum *s* using xspec package [Arnaud, ASP Conf. Ser. 17 (1996)]
 - 2. Use posteriors p(M, R|s) as likelihoods to infer EoS

 $p(s|\lambda) \propto \int dM dR \ p(M,R|s)\delta(R-R(M,\lambda))$

Inference directly from telescope spectra

- Can sample from likelihood: for given λ_i sample (M_i, R_i) and (independently) ν_i
 - \rightarrow Simulate spectrum $s_i \sim p(s|\lambda_i, v_i)$ with xspec and add noise
 - → Here use NSATMOS model and Chandra response function [Heinke *et al.*, Astrophys. J. 644 (2006)]
- Train neural network to regress (λ₁, λ₂) from spectrum and nuisance parameters [Farrell *et al.*, JCAP 02 (2023)]

- Train neural network to predict spectra s for given (M, R, v)
 - \rightarrow Approximate likelihood p(s|M, R, v)
 - \rightarrow Compute $p(s|\lambda, v)$ with second neural network

Neural likelihood estimation

- Previous approaches only point estimates of EoS parameters or expensive likelihood evaluation
 - \rightarrow Marginalized over nuisance parameters
- Neural likelihood estimation: train neural density estimator to approximate likelihood

 $q_{\Phi}(\boldsymbol{s}|\boldsymbol{\lambda},\boldsymbol{v})\approx p(\boldsymbol{s}|\boldsymbol{\lambda},\boldsymbol{v})$

[Papamakarios, Sterratt and Murray, AISTAT (2019)]

Neural likelihood estimation

- Normalizing flows can model complicated probability distributions in high dimensions
 [Dinh, Sohl-Dickstein and Bengio, arXiv:1605.08803 (2016)]
 - → Represent probability distribution via invertible and differentiable transformations $f_{\Phi_1} \circ \cdots \circ f_{\Phi_N}$
- Minimizing statistical distance is equivalent to maximizing log probability

$$\min_{\Phi} D_{\mathsf{KL}} \left(p(\boldsymbol{s}|\boldsymbol{\lambda}, \boldsymbol{v}) \middle| \middle| q_{\Phi}(\boldsymbol{s}|\boldsymbol{\lambda}, \boldsymbol{v}) \right) = \max_{\Phi} \int d\boldsymbol{s} \ p(\boldsymbol{s}|\boldsymbol{\lambda}, \boldsymbol{v}) \left[\log p - \log q_{\Phi} \right]$$
$$= \max_{\Phi} \sum_{\boldsymbol{s}_{i} \sim p(\boldsymbol{s}|\boldsymbol{\lambda}_{i}, \boldsymbol{v}_{i})} \log q_{\Phi}(\boldsymbol{s}_{i}|\boldsymbol{\lambda}_{i}, \boldsymbol{v}_{i})$$

• Train 100 flows, use **ensemble average** over N = 5 best-performing

$$\log p(\boldsymbol{s}|\boldsymbol{\lambda},\boldsymbol{v}) \approx \frac{1}{N} \sum_{j} \log q_{\Phi_j}(\boldsymbol{s}|\boldsymbol{\lambda},\boldsymbol{v})$$

Neural likelihood estimation

- Multiply with priors and sample from posterior $p(\lambda, v|s) \propto p(s|\lambda, v)p(\lambda)p(v)$
 - → Uniform prior on EoS parameters $p(\lambda)$ $\lambda_1 \in [4.75, 5.25]$ $\lambda_2 \in [-2.05, -1.85]$
 - \rightarrow **Different scenarios** for prior information on nuisance parameters p(v)

parameter	true	tight	loose
d	exact	5%	20%
N _H	exact	30%	50%
$\log(T_{\rm eff})$	exact	±0.1	±0.2

Scaling to multiple observations

$$p(\lambda, v_{1...J}|s_{1...J}) \propto \left(\prod_{j} p(s_{j}|\lambda, v_{j})p(v_{j})\right) p(\lambda)$$

- High dimensional parameter space
 - \rightarrow Likelihood differentiable $\nabla_{\lambda,\nu} p(s|\lambda,\nu)$, can use **Hamiltonian Monte Carlo** (HMC) sampling

Example posterior distribution

- Full posterior p(λ, v|s) directly from telescope spectra
 - \rightarrow Here: based on 10 simulated spectra for example EoS
- ► Three scenarios: true, tight and loose
 - \rightarrow Uncertainties much smaller in true case
- ► Constrain *N_H* and log(*T*_{eff}) much better than prior information
 - \rightarrow In tight case *d* posterior similar to prior
- ► Transform into P(ε) and R(M) constraints using TOV equations

Example posterior distribution

- Full posterior p(λ, v|s) directly from telescope spectra
 - \rightarrow Here: based on 10 simulated spectra for example EoS
- ► Three scenarios: true, tight and loose
 - \rightarrow Uncertainties much smaller in true case
- ► Constrain *N_H* and log(*T*_{eff}) much better than prior information
 - \rightarrow In tight case *d* posterior similar to prior
- ► Transform into *P*(*ε*) and *R*(*M*) constraints using TOV equations

[[]LB et al., arXiv:2403.00287 (2024)]

Example posterior distribution

- Full posterior p(λ, v|s) directly from telescope spectra
 - \rightarrow Here: based on 10 simulated spectra for example EoS
- ► Three scenarios: true, tight and loose
 - \rightarrow Uncertainties much smaller in true case
- Constrain N_H and log(T_{eff}) much better than prior information
 - \rightarrow In tight case *d* posterior similar to prior
- ► Transform into P(ε) and R(M) constraints using TOV equations

[[]LB et al., arXiv:2403.00287 (2024)]

Average performance on test set

- Compute maximum-a-posteriori estimate ($\lambda_{1,pred}, \lambda_{2,pred}$) for 100 random EoS
 - \rightarrow Again 10 simulated spectra for each EoS
- Compare to ground-truth values $(\lambda_{1,true}, \lambda_{2,true})$
 - \rightarrow Distribution centered around 0, **no systematic bias**

[LB et al., arXiv:2403.00287 (2024)]

Average performance on test set

Compare total standard deviation to previous approaches

$$\sigma_{\rm tot} = \sqrt{\sigma_{\lambda_1}^2 + \sigma_{\lambda_2}^2}$$

 \rightarrow Better accuracy than previous approaches

p (v)	method	$\sigma_{ m tot}$
true	NN(Spectra)	0.099
	ML-Likelihood	0.096
	NLE	0.090
tight	NN(Spectra)	0.115
	ML-Likelihood	0.112
	NLE	0.097
loose	NN(Spectra)	0.152
	ML-Likelihood	0.120
	NLE	0.113

[LB et al., arXiv:2403.00287 (2024)]

► For the first time posterior for nuisance parameters

Increasing number of observations

- Amortization: need to train normalizing flows only once
 - → Inexpensive likelihood evaluation, inclusion of additional observations straightforward
- ► Many more measurements in the future

[lacovelli et al., Phys. Rev. D 108 (2023)]

- \rightarrow Not feasible to use two-step method with integrations
- Extend neural likelihood estimation to other neutron star data [Dax et al., Phys. Rev. Lett. 127 (2021)]
- ► Apply to real data and include mass in likelihood q_Φ(λ, ν, M|s) [Steiner *et al.*, MNRAS 476 (2018)]

[[]LB et al., arXiv:2403.00287 (2024)]

Summary

- ► Bayesian inference of neutron star EoS based on thermal X-ray spectra
 - \rightarrow Likelihood analytically intractable \rightarrow Inference in two steps
- ► Neural likelihood estimation: train normalizing flows to approximate likelihood

 $q_{\phi}(s|\lambda, v) \approx p(s|\lambda, v)$

- \rightarrow Full posterior directly from telescope spectra
- \rightarrow Better accuracy than previous methods
- Inexpensive inclusion of additional data
 - \rightarrow More scalable to growing number of observations expected in coming years

Supplementary material

Comparison with two-step method

- Use xspec to predict mass and radius of neutron stars
 - \rightarrow Repeat for multiple v_i from p(v) to estimate ΔM and ΔR
- Train neural network to predict λ :

[Farrell et al., JCAP 02 (2023)]

► Compare accuracy:

$\mathcal{D}(\mathcal{V})$	method	$\sigma_{ m tot}$
true	NN(<i>M</i> , <i>R</i> via xspec)	0.085
	NLE	0.090
tight	NN(M, R via xspec)	0.098
	NLE	0.097
loose	NN(<i>M</i> , <i>R</i> via xspec)	0.136
	NLE	0.113

[LB et al., arXiv:2403.00287 (2024)]

Spectral EoS parametrization

Begin with relativistic mean-field model GM1L

 \rightarrow Describe by spectral expansion

$$\Upsilon(P) = \frac{1 - c_s^2}{c_s^2}$$
 with $c_s^2 = \frac{\partial P}{\partial \varepsilon}$

• Expand in effective enthalpy $h = \int_0^P dP' \ (\varepsilon(P') + P')^{-1}$

$$\Upsilon(h) = \exp\left[\sum_{k} \lambda_k \Phi_k(h)\right] \quad \text{with} \quad \Phi_k = \left[\log\left(\frac{h}{h_0}\right)\right]^k$$

 \rightarrow Second-order expansion already sufficient to describe EoS up to 10%

[Lindblom, Phys. Rev. D 82 (2010)]

• Vary parameters (λ_1, λ_2) for 10^3 EoS with ~ 100 stars (M, R) each

[Typel et al., Phys. Rev. C 81 (2010)]

[Lindblom, Phys. Rev. D 82 (2010)] [Lindblom, Phys. Rev. D 97 (2018)]

Hamiltonian Monte Carlo

Random-walk Metropolis

• Generate chain of samples of target distribution $\pi(q)$

 \rightarrow With gradients can reduce correlations and improve over random walks

Potential and kinetic term inspired by classical mechanics

$$H(p,q) = -\log \pi(q) + \frac{1}{2} p^{T} M^{-1} p$$
 [Betancourt, arXiv:1701.02434 (2017)]

- ► Sample auxiliary 'momentum' based on covariance $p \sim \mathcal{N}(0, M^{-1})$
 - \rightarrow Solve **Hamiltonian equations** with leap frog integrator for (q', p')
 - $\frac{dq}{dt} = \frac{\partial H}{\partial p} \qquad \frac{dp}{dt} = -\frac{\partial H}{\partial q}$
- ► Metropolis-Hasting: accept new state q' with probability

 $\min\left[1, \exp\left(-H(q', p') + H(q, p)\right)\right]$

Hamiltonian Monte Carlo

Normalizing flows

 Represent probability distribution p(x) via invertible and differentiable transformations f_Φ of base distribution π(u)

[Papamakarios et al., J. Mach. Learn. Res. 22 (2021)]

- Choose simple **base distribution** $\pi(u)$, i.e. standard Gaussian
- Generate samples

$$u \sim \pi(u)$$
 $x = f_{\Phi}(u)$

Compute probability density

$$p(x) = \pi(f_{\Phi}^{-1}(x)) \left| \det\left(\frac{\partial f_{\Phi}^{-1}}{\partial x}\right) \right|$$

- → Transformation should be easily invertible and have fast computable Jacobian determinant
- Stack multiple transformations $f_{\Phi} = f_{\Phi_1} \circ \cdots \circ f_{\Phi_N}$

Masked Autoregressive Flows

► Each dimension x of $(x_1,...,x_D)$ sequentially transformed based on previous $x_{1:d-1} = (x_1,...,x_{d-1})$

$$p(x) = \prod_{d=1}^{D} p(x_d | x_{1:d-1})$$
[Papamakarios, Pavlakou and Murray, NeurIPS 30 (2017)]

- Choose Gaussian marginals $p(x_d|x_{1:d-1}) = \mathcal{N}(x_d|\mu_d, \sigma_d^2)$
 - \rightarrow Mean and standard deviation computed by NN based on previous values
 - \rightarrow Sampling is equivalent to scaling and shifting standard Gaussian

 $x_d = \mu_d + \sigma_d u_d \qquad u_d \sim \mathcal{N}(0, 1)$

[Kingma et al., NeurIPS 29 (2016)]

- ► For inverse do not need to invert NN, autoregressive structure leads to triangular Jacobian
- Choose binary masks to compute all u_d in single pass

 \rightarrow Very efficiently obtain p(x), less efficient sampling x

Low-mass binaries in quiescence

- ► Low-mass donor star transferring material onto neutron star
 - \rightarrow Minimal X-ray radiation during **low-accretion periods**
- Luminosity given by distance and bolometric flux

 $L = 4\pi d^2 F$

- \rightarrow Flux partly absorbed by interstellar medium depending on N_H
- ► Assume uniform temperature → Stefan-Boltzmann law

 $L = \sigma_{\rm SB} 4\pi R^2 T_{\rm eff}^4$

- \rightarrow Needs to account for gravitational redshift and light-bending (depending on M/R)
- Radius from eight qLMXBs:

 $R(1.4 M_{\odot}) = 12.0^{+1.1}_{-0.6} \,\mathrm{km}$

[Heinke et al., Astrophys. J. 598 (2003)]

[Steiner et al., Mon. Not. Roy. Astron. Soc. 476 (2018)]

Multimodal masses

► Parameters close to border of prior (\(\lambda_1, \lambda_2\)) = (4.77, -1.91) in true scenario

3

 $[^{\odot}M]_{M}$

- \rightarrow Some chains **converge at wrong** $M^{(2)}$ and wrong λ
- Radius has larger impact on spectrum than mass
- Likelihood of false mode 10⁻⁴ times smaller

