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Such objects are interesting as they can 
potentia l ly be dark matter .  One example ,  
would be primordial  black holes.  

INTRODUCTION
Objects with very l ight masses (10-6-10-3 
Msun) can emit continuous gravitational  
waves during the inspira l  phase in the 
frequency range of L IGO-Virgo-KAGRA. 



Objective n° 1

GOALS AND OBJECTIVES

Correctly model  the 
signal  in order to apply 

the heterodyne 
correction method

Objective n° 2
Reduce the computing cost of  the search 

by eff ic iently constructing a gr id that 
exploits the part icular it ies of  this signal

Objective n° 3
Test the employed 

method with real  O3 
data from LVK



SIGNAL MODELING
The f irst step to search for these signals is to 
correctly model them as the heterodyne method 
requires it  



SIGNAL
Assuming the small mass approximation and taking only the 0PN order, the 
spin-up of the signal can be modelled as:

Integrating it leads to an expression of the form of a power law

Additionally, the signal is subject 
to the Doppler modulation. This 
modifies the frequency as



HETERODYNING
The core of the method



HETERODYNING

LVK (2021)

O.J. Piccinni et al. (2018)

This is Sn(f)

https://arxiv.org/pdf/2111.03606.pdf
https://arxiv.org/pdf/1811.04730.pdf


PEAKMAP
The peakmap is a collection of peaks in time and frequency, created by computing the periodogram of a set of 

fast Fourier transforms (FFTs) of length Tcoh of the data, normalized by an average spectrum, and selecting only the 
peaks above a given threshold. P. Astone et al. (2014)

Peakmap of an injected signal with a chirp mass of 10-4 Msun at 1 kpc and with a reference 
frequency of 103 Hz with no correction (left) and after the heterodyne correction (right).

This method is based in seeing a 
power excess corresponding to the CW 
signal. By heterodyning we make the signal 
visible in the peakmap, increasing the SNR. 
We then project the peaks in the frequency 
axis and use the Critical Ratio as our 
statistic 

NOTE: The frequency bin width is 1/Tcoh.

https://arxiv.org/pdf/1407.8333.pdf


SENSITIVITY
The minimum detectable strain at a given confidence level (denoted by the gamma) 

can be computed as a function of the noise, the length of FFT, the observing time and some 
factor dependent on the antenna.

At the same time, an estimation of the strain of the signal can be obtained by 
evaluating the strain at the initial time. This is,

which leads to a maximum reachable distance of

P. Astone et al. (2014)

https://arxiv.org/pdf/1407.8333.pdf


GRID CONSTRUCTION
The core of the new contributions!



Select  the parameters  
that  fu l ly  def ine the 

s igna l

01

PARAMETERS

02 03 04

With the parameters  
set ,  the s igna l  is  

complete ly  def ined ,  and 
the frequency evolut ion 

can be computed

SIGNAL
With the s igna l  model ,  

the heterodyne 
correct ion can be 

appl ied to the data

HETERODYNE
With the heterodyned 
data ,  the peakmap can 
be computed and i f  a  

s igna l  is  present ,  
ident i f ied

PEAKMAP

PROBLEM SOLVED?



CAN WE BE 
SMART?
Is  there a way in which we can 
reduce the parameter space to be 
searched?

In fact ,  is  there a special  feature of 
the signal  that can be exploited?



CAN WE BE 
SMART?

E U R E K A !



PARAMETER 
DEGENERACY

Inspecting the form of the signal’s frequency evolution we note 
a potential degeneracy of the parameters. In other words, various 
combinations of both parameters can lead to similar signals. 

 Let’s create a new variable that quantifies the overall 
frequency shift of a signal in a period of time Tobs as

ξ(f0,Mc, Tobs) =
[

f
1/α
0 + (1− n)kTobs

]α
− f0

For a fixed observing time, this expression maps the two-
dimensional space to a single dimensional one. The question is, how do 
signals with the same value of this new variable look like?
 
 Example of 

Signal 1: f0 = 20.365Hz, Mc = 0.0077M!, ξ = 0.5Hz
Signal 2: f0 = 254.8745Hz, Mc = 3.1× 10−5M!, ξ = 0.5Hz



PARAMETER 
DEGENERACY

This similar behavior is observed in the phase 
evolution and hence it can be used for the heterodyne 
correction 

There is still a residual in the frequency… BUUT we can use 
the Tcoh to absorb this modulation in a single frequency bin! And 
even better, the Doppler shift can also be contained inside a 
frequency bin if Tcoh is not too long

1/Tcoh



NEW PARAMETER 
SPACE

Theoretically, now we can construct a grid by 
defining points in the xi-parameter space which is 
considerably less expensive than covering the two-
dimensional parameter space of frequency and chirp 
mass.

This is how the iso-xi lines look like for Tobs = 0.5 days



GRID 1:
VARIABLE Tcoh



GRID 1:
VARIABLE Tcoh

We must set a maximum coherence time. 

Unfortunately, the 
Tcoh gets very small 
values, reducing the 
sensitivity of the 
search



NOTE ON THE 
MAXIMUM Tcoh

There is a competing effect: 

• Increasing the sensitivity requires to use longer coherence 
times. 

• But for a fixed observing time, the number of points in the 
time axis is Tobs/Tcoh. Therefore, increasing the coherence 
time reduces the number of points, which messes with the 
statistics of the CR.

• But if Tcoh is too small, then the frequency bins get too 
wide to be reasonable 



GRID 2:
FIXED Tcoh

The idea is the same, but populating an iso-xi 
curve in order to make sure that the Tcoh can be kept 
constant. If the variation of the signals is higher (which 
happens at high xi) then more points are needed. 

 A way to accelerate this calculation is by noting 
that since the objective function is monotonic, the 
solution will be found at the feasible boundary. Therefore, 
the next frequency can be found at the point where 



GRID 2:
SENSITIVITY

By fixing the coherence time we can reach the 
Galactic Center for a large portion of the parameter 
space, which justifies the use of this grid.

 Reaching the GC or even the halo is interesting in 
the context of DM searches, so having this distance reach 
is a good point. 

 In any case, if we want to perform a GC search 
this grid is not optimal, as there is a part of the 
parameter space that cannot reach it, so placing points of 
the grid there “is a waste of computing time”. 

GC



GRID 2:
SENSITIVITY



GRID 3:
VARIABLE  Tcoh ,  F IXED  d

With this grid, the distance is maintained to the 
GC one and the Tcoh is allowed to change to not waste 
computing resources.

 With “only” 18,000 points we can probe a 
considerable portion of the parameter space reaching the 
GC, which is interesting for DM searches.

 NOTE: Since the maximum Tcoh is 400s, the 
Doppler shift is also contained in a single frequency bin, 
which implies that the search is technically 
omnidirectional



COHERENCE  BETWEEN 
TRIGGERS
I f  candidates are selected,  we need a way to know 
the parameters of the signal  and combine results 
across t ime segments and interferometers



PARAMETER 
ESTIMATION

Each trigger will have an associated xi and 
frequency associated to it. This is referred to the starting 
time of the BSD file, yet we need it in terms of a 
reference time. 

 Thanks to the analytical formulas, each parameter 
can be expressed in the same reference time, which allows 
to combine easily the results among interferometers and 
among time segments.



INJECTION CAMPAIGN
In order to test the method, a set of injections can 
be done and then the search pipel ine run.



RESULTS

We inject a total of 1000 signals uniformly 
distributed (in log scale) in the parameter space of 
interest with random inclinations, but all placed at the 
GC and run the search in the GC grid.

 We can consider that an injection is recovered if 
its distance with the parameters recovered is less than 4. 
This distance is defined as

d =

√

(

f0 − f ′

0

∆f0

)2

+

(

Mc −M′
c

∆Mc

)2



RESULTS

Computing the strain for all the injections, we can 
obtain also an estimation of the efficiency. Here we are 
ignoring the potential dependency of the efficiency on the 
frequency, but it already gives an idea of the sensitivity 
of the method.

 Two cases are here considered:

 The 95% of signals are recovered at

h
1
95% = 2.34× 10

−24

h
2
95% = 2.26× 10

−24

LHO LLO T1 T2
CASE 1
CASE 2



POTENTIAL UPPER 
LIMITS TO PBH

We can assume two formation mechanisms: a 2-body channel and a 3-body channel. Both of them are 
considered to happen during the early universe, as it is the dominant channel compared to late time formation. 

Then, an upper limit can be set by excluding the region where the number of expected events, N, is above 3. N 
is computed, accounting for the DM distribution surrounding the MW as

See M. Andrés-Carcasona et al. (2024) and references therein for the various terms

O. Pujolas et al. (2021)

https://arxiv.org/pdf/2405.05732
https://arxiv.org/pdf/2107.03379


POTENTIAL UPPER 
LIMITS TO PBH

P R E L I M I N A R Y



NEXT STEPS

TEST

We need to run more 
tests, with injections, 
changing the setup, 

optimizing 
parameters,…

REVIEW

We plan to start the 
internal LVK review 

ASAP.

SEARCH

Perform the actual 
search and place the 
upper limits of PBH 

populations with actual 
results

The next steps that we plan to do in order to continue this 
work are important to ensure the good outcome of the 
project.



THANK'S FOR 
WATCHING



EXTRA SL IDES



COMPARISON TO 
RECENT SEARCHES

Andrew L. Miller et al. (2024)

Main differences:

• We include the effect of 3-body channel.

• We assume a NFW profile of DM in the 
milky way.

• We include the suppression factor.

• We are able to probe fPBH < 1 below 10-3 
solar masses.

https://arxiv.org/pdf/2402.19468v1

