HierarchMC

Jasper Martins

Maria Alessandra Papa, Benjamin Steltner

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Leibniz Universität Hannover

A Bayesian Framework for Hierarchical All-Sky Searches for Continuous Gravitational Waves

20.06.2024

HierarchMC

A Bayesian Framework for Hierarchical All-Sky Se

Jasper Martins

Maria Alessandra Papa, Benjamin Steltner

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

aress!

Leibniz Universität Hannover

Gravitational Waves

Where are we going in this talk?

Earlier (later) talks:

- Different detection techniques:
 - Hough-Transform (Badri's Talk)

- Falcon-Pipeline (Vladimir's Talk)
- Many more....
- Different search methods:
 - Grid-based / template-bank based searches

Bayesian Parameter Estimation Contraction of the second second second second to a second

BATHE STATES AND SAL HO STATE BALAND IN BAR DUS

Neural networks / machine learning

Computational Cost

Source: Sieniawska and Berger, Universe 5, 217 (2019) (and Karl's talk)

All-Sky Searches

- Significant computational effort
- Semi-coherent methods reduce the computational cost, but have significant false-alarm rates!

Hierarchical Searches

Initial Search Stage

- Most computational expensive part of the search
- Sets baseline sensitivity:
 - What was not found can never be recovered later

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Follow-up Stages

- Constrain overall sensitivity:
 - What was not followed-up can not be detected
- → More efficient pipelines: Follow-up more candidates and increase sensitivity
- → Bayesian pipelines promising / successful alternatives

Bayes' Theorem

$$P(\vartheta \mid \mathcal{D}, \mathcal{M}) = \frac{P(\mathcal{D} \mid \vartheta, \mathcal{M}) P(\vartheta)}{\int_{\mathcal{R}} P(\mathcal{D} \mid \vartheta, \mathcal{M}) P(\vartheta)} P(\vartheta)$$

- Prior
- Likelihood
- Evidence Z
- Posterior

Bayes' Theorem

$$P(\vartheta \mid \mathcal{D}, \mathcal{M}) = \frac{P(\mathcal{D} \mid \vartheta, \mathcal{M}) P(\vartheta)}{\int_{\mathcal{R}} P(\mathcal{D} \mid \vartheta, \mathcal{M}) P(\vartheta)} P(\vartheta)$$

- Prior
- Likelihood
- Evidence Z
- Posterior

Credible Regions

$$CR(\epsilon) := \operatorname{argmin}_{\Theta} \operatorname{Vol} \left(\Theta \subset \mathscr{R} \mid \int_{\Theta} P(\vartheta \mid \mathscr{D}, \mathscr{M}) d\vartheta = \epsilon \right)$$

Jasper Martins

- Prior
- Likelihood
- Evidence Z
- Posterior

Credible Regions

$$CR(\epsilon) := \operatorname{argmin}_{\Theta} \operatorname{Vol} \left(\Theta \subset \mathscr{R} \mid \int_{\Theta} P(\vartheta \mid \mathscr{D}, \mathscr{M}) d\vartheta = \epsilon \right)$$

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Posterior describes where to allocate follow-up resources efficiently!

Evidence (Bayes factor) can be used like a detection statistic!

Posterior-based search regions are the smallest possible at given credible level!

- Prior \Rightarrow Chosen via Jeffreys invariance principle
- Likelihood $\Rightarrow \exp(2\mathcal{F})$
- Evidence Z
- Posterior \Rightarrow Monte Carlo sampling

Credible Regions

$$CR(\epsilon) := \operatorname{argmin}_{\Theta} \operatorname{Vol} \left(\Theta \subset \mathscr{R} \mid \int_{\Theta} P(\vartheta \mid \mathscr{D}, \mathscr{M}) d\vartheta = \epsilon \right)$$

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Posterior describes where to allocate follow-up resources efficiently!

Evidence (Bayes factor) can be used like a detection statistic!

Posterior-based search regions are the smallest possible at given credible level!

9 // P(9 //) $P(\vartheta \mid \mathcal{D}, \mathcal{M})$ • Posterior \Rightarrow Obtain throu • Prior \Rightarrow Chosen via Jeffré • Likelihood $\Rightarrow \mathcal{F} - Statis$

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

JB

 $CR(\epsilon) := \operatorname{argmin}_{\Theta} Vol | \Theta \subset \mathscr{R} | P(\vartheta | \mathscr{D}, \mathscr{M}) d\vartheta = \epsilon$

Core idea: Use posteriors directly as the prior distribution for a MC-run at a higher coherence time!

Posterior describes where to allocate follow-up resources efficiently!

Evidence (Bayes factor) can be used like a detection statistic!

Posterior-based search regions are the smallest possible at given credible level!

Implementation I - Sampler

• There is a vast library of Monte-Carlo Sampling algorithms. Which is the best for the task?

Nested Sampling

- Originally designed to compute evidences
 - Focus on exploration of the prior volume
 - Robust for multimodal likelihoods
 - Predictable convergence
- One key parameter for convergence rate and accuracy: $n_{\rm live}$
- Interactive Demo: here
- We use dynesty (through Bilby and SWIGLAL)

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Source: https://dynesty.readthedocs.io/en/stable/_images/title.gif

• Core Idea of HierarchMC: Use posterior as prior, but: MC-sampling only yields posterior samples!

- Core Idea of HierarchMC: Use posterior as prior, but: MC-sampling only yields posterior samples!
- Need a model to describe the posterior that can be used to propose new (prior) samples

- Spurious Samples
 - DBSCAN pre-clustering

Jasper Martins

- - DBSCAN pre-clustering

Jasper Martins

- - DBSCAN pre-clustering

Jasper Martins

- - ➡ DBSCAN pre-clustering

Jasper Martins

- - DBSCAN pre-clustering

Jasper Martins

- Core Idea of HierarchMC: Use posterior as prior, but: MC-sampling only yields posterior samples!
- Need a model to describe the posterior that can be used to propose new (prior) samples

Solution: Gaussian Mixture Models (core: scikit-learn)

- Do not know the number of modes
 - Bisecting, recursive algorithm
- Spurious Samples
 - ➡ DBSCAN pre-clustering

Jasper Martins

- Core Idea of HierarchMC: Use posterior as prior, but: MC-sampling only yields posterior samples!
- Need a model to describe the posterior that can be used to propose new (prior) samples

Solution: Gaussian Mixture Models (core: scikit-learn)

- Do not know the number of modes
 - Bisecting, recursive algorithm
- Spurious Samples
 - DBSCAN pre-clustering

Jasper Martins

Results

Jasper Martins

Results - Performance Evaluation

- Question 2: Once HierarchMC can be used, is it competitive?

• Question 1: In standard follow-up procedures, at which stage **can** HierarchMC be used?

Results - Performance Evaluation

- Question 1: In standard follow-up procedures, at which stage **can** HierarchMC be used?
- Question 2: Once HierarchMC can be used, is it competitive?

Public Data" — Steltner et al. (2023)

- Most sensitive all-sky search for isolated sources for the target parameter space published Conducted on LIGO O3a data (+ LIGO O3b)
- Reference signal population: ≈ 1600 signals with sensitivity depths Unif(50,65) [1/ \sqrt{Hz}]
- Recovered 6 (out of 7 possible) hardware injections

The "Deep Einstein@Home All-sky Search for Continuous Gravitational Waves in LIGO O3

Overview of the Full Hie

Search	T _{coh} (hr)	$N_{ m seg}$	δf ($\mu { m Hz}$)	$\delta \dot{f}$ (10 ⁻¹⁴ Hz s ⁻¹)	m _{sky}
Stage 0	120	37	2	60	0.002
Stage 1	120	37	1	15	0.0002
Stage 2	120	37	1	2	$2 imes 10^{-6}$
Stage 3	240	19	0.1	0.2	$1.0 imes 10^{-8}$
Stage 4	490	9	0.013	0.064	$3.2 imes 10^{-10}$
Stage 5	1100	4	0.001	0.032	1.4×10^{-10}
Stage 6	2200	2	0.001	0.009	$2.8 imes 10^{-11}$
Stage 7	Coherent	1	0.001	0.0063	1×10^{-11}
Stage 8	O3b coh.	1	0.001	0.0063	1×10^{-11}
Stage 9 ^b	O3a+b coh.	1	0.001	0.0063	1×10^{-11}

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

		for		Tara	
		$J \in [20]$	Hz, 800 Hz], ŕ e	' ^u get:	
Hierarchy	v of Searches		577 6	$1-2.6 \times 10^{-9} Hz/s,$	2.6 _X
			r _{sky}		
$\langle \mu \rangle_{\mathbf{r}}$	Δf	$\Delta \dot{f}$	d(0.002)	$N_{ m in}$	
(10^{-2})	(μHz)	$(10^{-14} \text{ Hz s}^{-1})$			
56	Full range	Full range	All sky	6.7×10^{18}	35
31	1000	11,250	10.0	3,513,855	3
2.5	50	1200	1.0	386,429	3
0.06	5	200	0.2	35,635	
< 0.01	0.5	35	0.04	5116	
<0.01	0.2	20	0.017	1387	
<0.01	0.1	8.5	0.008	310	
<0.01	0.07	6	0.0057	54	
<0.01	$\geqslant 0.07^{a}$	6	0.0057	12	
<0.01	$\geqslant 0.07^{a}$	6	0.0057	6	

Overview of the Full Hie

Í						
	Search	T _{coh} (hr)	$N_{ m seg}$	δf ($\mu { m Hz}$)	$\delta \dot{f}$ (10 ⁻¹⁴ Hz s ⁻¹)	m _{sky}
	Stage 0	120	37	2	60	0.002
	Stage 1	120	37	1	15	0.0002
	Stage 2	120	37	1	2	$2 imes 10^{-6}$
	Stage 3	240	19	0.1	0.2	$1.0 imes 10^{-8}$
	Stage 4	490	9	0.013	0.064	3.2×10^{-10}
	Stage 5	1100	4	0.001	0.032	1.4×10^{-10}
	Stage 6	2200	2	0.001	0.009	2.8×10^{-11}
	Stage 7	Coherent	1	0.001	0.0063	1×10^{-11}
	Stage 8	O3b coh.	1	0.001	0.0063	1×10^{-11}
	Stage 9 ^b	O3a+b coh.	1	0.001	0.0063	1×10^{-11}

Stage O: Einstein@Home

Stage 1-9: Atlas

Stage 1: Clustering + Refinement

Stage 2: Refinement

		for		Tara	
		J E [20]	Hz, 800 Hz], ŕ e	' ^u get:	
Hierarchy	v of Searches		577 6	$1-2.6 \times 10^{-9} Hz/s,$	2.6 _X
			r _{sky}		
$\langle \mu \rangle_{\mathbf{r}}$	Δf	$\Delta \dot{f}$	d(0.002)	$N_{ m in}$	
(10^{-2})	(μHz)	$(10^{-14} \text{ Hz s}^{-1})$			
56	Full range	Full range	All sky	6.7×10^{18}	35
31	1000	11,250	10.0	3,513,855	3
2.5	50	1200	1.0	386,429	3
0.06	5	200	0.2	35,635	
<0.01	0.5	35	0.04	5116	
<0.01	0.2	20	0.017	1387	
<0.01	0.1	8.5	0.008	310	
<0.01	0.07	6	0.0057	54	
<0.01	$\geqslant 0.07^{a}$	6	0.0057	12	
<0.01	$\geqslant 0.07^{a}$	6	0.0057	6	

Overview of the Full Hie

Search	T _{coh} (hr)	$N_{ m seg}$	δf ($\mu { m Hz}$)	$\delta \dot{f}$ (10 ⁻¹⁴ Hz s ⁻¹)	m _{sky}
Stage 0	120	37	2	60	0.002
Stage 1	120	37	1	15	0.0002
Stage 2	120	37	1	2	$2 imes 10^{-6}$
Stage 3	240	19	0.1	0.2	1.0×10^{-8}
Stage 4	490	9	0.013	0.064	3.2×10^{-10}
Stage 5	1100	4	0.001	0.032	1.4×10^{-10}
Stage 6	2200	2	0.001	0.009	2.8×10^{-11}
Stage 7	Coherent	1	0.001	0.0063	1×10^{-11}
Stage 8	O3b coh.	1	0.001	0.0063	1×10^{-11}
Stage 9 ^b	O3a+b coh.	1	0.001	0.0063	1×10^{-11}

Stage O: Einstein@Home

Stage 1-9: Atlas

Stage 1: Clustering + Refinement

Stage 2: Refinement

		for		Tara	
		J E [20]	Hz, 800 Hz], ŕ e	' ^u get:	
Hierarchy	v of Searches		577 6	$1-2.6 \times 10^{-9} Hz/s,$	2.6 _X
			r _{sky}		
$\langle \mu \rangle_{\mathbf{r}}$	Δf	$\Delta \dot{f}$	d(0.002)	$N_{ m in}$	
(10^{-2})	(μHz)	$(10^{-14} \text{ Hz s}^{-1})$			
56	Full range	Full range	All sky	6.7×10^{18}	35
31	1000	11,250	10.0	3,513,855	3
2.5	50	1200	1.0	386,429	3
0.06	5	200	0.2	35,635	
<0.01	0.5	35	0.04	5116	
<0.01	0.2	20	0.017	1387	
< 0.01	0.1	8.5	0.008	310	
<0.01	0.07	6	0.0057	54	
<0.01	$\geqslant 0.07^{a}$	6	0.0057	12	
< 0.01	$\geqslant 0.07^{a}$	6	0.0057	6	

Overview of the Full H

Search	T _{coh} (hr)	$N_{ m seg}$	δf ($\mu { m Hz}$)	$\delta \dot{f}$ (10 ⁻¹⁴ Hz s ⁻¹)	m _{sky}
Stage 0	120	37	2	60	0.002
Stage 1	120	37	1	15	0.0002
Stage 2	120	37	1	2	$2 imes 10^{-6}$
Stage 3	240	19	0.1	0.2	$1.0 imes 10^{-8}$
Stage 4	490	9	0.013	0.064	3.2×10^{-10}
Stage 5	1100	4	0.001	0.032	1.4×10^{-10}
Stage 6	2200	2	0.001	0.009	2.8×10^{-11}
Stage 7	Coherent	1	0.001	0.0063	1×10^{-11}
Stage 8	O3b coh.	1	0.001	0.0063	1×10^{-11}
Stage 9 ^b	O3a+b coh.	1	0.001	0.0063	1×10^{-11}

Stage O: Einstein@Home

Stage 1-9: Atlas

Stage 1: Clustering + Refinement

Stage 2: Refinement

				T	
		$f \in [20]$	Hz, 800 Hz1 &	larget:	
Hierarchy	of Searches			$(-2.6 \times 10^{-9} \text{Hz/s})$	ر 2.6
<i>,</i> ,	A <i>C</i>		r _{sky}		
$\langle \mu \rangle$ (10 ⁻²)	Δf (μ Hz)	Δf (10 ⁻¹⁴ Hz s ⁻¹)	d (0.002)	N _{in}	
56	Full range	Full range	All sky	$6.7 imes 10^{18}$	3
31	1000	11,250	10.0	3,513,855	3
2.5	50	1200	1.0	386,429	,
0.06	5	200	0.2	35,635	
<0.01	0.5	35	0.04	5116	
<0.01	0.2	20	0.017	1387	
<0.01	0.1	8.5	0.008	310	
< 0.01	0.07	6	0.0057	54	
< 0.01	$\geqslant 0.07^{a}$	6	0.0057	12	
<0.01	$\geqslant 0.07^{a}$	6	0.0057	6	

Overview of the Full

Search	T _{coh} (hr)	$N_{ m seg}$	δf ($\mu { m Hz}$)	$\delta \dot{f}$ (10 ⁻¹⁴ Hz s ⁻¹)	m _{sky}
Stage 0	120	37	2	60	0.002
Stage 1	120	37	1	15	0.0002
Stage 2	120	37	1	2	$2 imes 10^{-6}$
Stage 3	240	19	0.1	0.2	1.0×10^{-8}
Stage 4	490	9	0.013	0.064	3.2×10^{-10}
Stage 5	1100	4	0.001	0.032	1.4×10^{-10}
Stage 6	2200	2	0.001	0.009	2.8×10^{-11}
Stage 7	Coherent	1	0.001	0.0063	1×10^{-11}
Stage 8	O3b coh.	1	0.001	0.0063	1×10^{-11}
Stage 9 ^b	O3a+b coh.	1	0.001	0.0063	1×10^{-11}

Stage O: Einstein@Home

Stage 1-9: Atlas

Stage 1: Clustering + Refinement

Stage 2: Refinement

				Tou	
		$f \in [20]$	Hz, 800 Hz1 ċ	rarget:	
Hierarchy	v of Searches		-12], <i>f</i> ∈	$[-2.6 \times 10^{-9} \text{Hz/s}]$	2.6
			r _{sky}		
$\langle \mu \rangle_{2}$	Δf	$\Delta \dot{f}$	d(0.002)	$N_{ m in}$	
(10^{-2})	(μHz)	$(10^{-14} \text{ Hz s}^{-1})$			
56	Full range	Full range	All sky	6.7×10^{18}	3
31	1000	11,250	10.0	3,513,855	
2.5	50	1200	1.0	386,429	
0.06	5	200	0.2	35,635	
< 0.01	0.5	35	0.04	5116	
< 0.01	0.2	20	0.017	1387	
< 0.01	0.1	8.5	0.008	310	
< 0.01	0.07	6	0.0057	54	
< 0.01	$\geqslant 0.07^{a}$	6	0.0057	12	
< 0.01	$\geqslant 0.07^{a}$	6	0.0057	6	

Overview of the Full Hier

Search	T _{coh} (hr)	$N_{ m seg}$	δf ($\mu { m Hz}$)	$\delta \dot{f}$ (10 ⁻¹⁴ Hz s ⁻¹)	m _{sky}
Stage 0	120	37	2	60	0.002
Stage 1	120	37	1	15	0.0002
Stage 2	120	37	1	2	$2 imes 10^{-6}$
Stage 3	240	19	0.1	0.2	1.0×10^{-8}
Stage 4	490	9	0.013	0.064	3.2×10^{-10}
Stage 5	1100	4	0.001	0.032	1.4×10^{-10}
Stage 6	2200	2	0.001	0.009	2.8×10^{-11}
Stage 7	Coherent	1	0.001	0.0063	1×10^{-11}
Stage 8	O3b coh.	1	0.001	0.0063	1×10^{-11}
Stage 9 ^b	O3a+b coh.	1	0.001	0.0063	1×10^{-11}

Stage O: Einstein@Home

Stage 1-9: Atlas

Stage 1: Clustering + Refinement

Stage 2: Refinement

			Ta	
	$f \in [20]$	Hz, 800 Hz1 ċ	larget:	
v of Searches		-12J,J E	$[-2.6 \times 10^{-9} \text{Hz/s}]$	2.6 _X
• •		r _{sky}		
Δf (μ Hz)	Δf (10 ⁻¹⁴ Hz s ⁻¹)	d (0.002)	$N_{ m in}$	
Full range	Full range	All sky	6.7×10^{18}	35
1000	11,250	10.0	3,513,855	38
50	1200	1.0	386,429	3
5	200	0.2	35,635	
0.5	35	0.04	5116	
0.2	20	0.017	1387	
0.1	8.5	0.008	310	
0.07	6	0.0057	54	
$\geqslant 0.07^{a}$	6	0.0057	12	
≥0.07 ^a	6	0.0057	6	
	y of Searches $\frac{\Delta f}{(\mu \text{Hz})}$ Full range 1000 50 5 0.5 0.5 0.2 0.1 0.07 ≥0.07 ^a ≥0.07 ^a	y of Searches $\frac{\Delta f}{(\mu \text{Hz})}$ $\frac{\Delta \dot{f}}{(10^{-14} \text{ Hz s}^{-1})}$ Full range Full range 1000 11,250 50 1200 5 200 0.5 35 0.2 20 0.1 8.5 0.07 6 ≥0.07 ^a 6 ≥0.07 ^a 6	$f \in [20 H_{z, 800} H_{z], \dot{f} \in V_{z}]$ Δf $\Delta \dot{f}$ $\Delta \dot{f}$ $\frac{I_{sky}}{d(0.002)}$ (μHz) $(10^{-14} Hz s^{-1})$ $Hz s^{-1}$ Full rangeAll sky100011,25010.05012001.052000.20.5350.040.2200.0170.18.50.0080.0760.0057 $\geqslant 0.07^{a}$ 60.0057 $\geqslant 0.07^{a}$ 60.0057	Target: $f \in [20 H_Z, 800 H_Z], \dot{f} \in [-2.6 \times 10^{-9} H_Z/s],$ Δf $\Delta \dot{f}$ $\Lambda \dot{f}$ $I_{0.002}$ N_{in} M_{in} N_{in} N_{in} N_{in} Full rangeFull rangeAll sky 6.7×10^{18} 100011,25010.03,513,8555012001.0386,42952000.235,6350.5350.0451160.2200.01713870.18.50.0083100.0760.005754 $\geq 0.07^a$ 60.005712 $\geq 0.07^a$ 60.00576

- HierarchMC is only useful if it is fast
- Stage 2 req. $\approx 10^6$ likelihood evaluations

- HierarchMC is only useful if it is fast
- Stage 2 req. $\approx 10^6$ likelihood evaluations
 - 10^5 Cand., 10^{-2} s per likelihood evalution $\Rightarrow 10^9$ s Runtime
 - Atlas: 10^4 CPU cores $\Rightarrow 10^5$ s Cluster-time
 - Cluster time $\mathcal{O}(days)$
- What about subsequent stages?

- HierarchMC is only useful if it is fast
- Stage 2 req. $\approx 10^6$ likelihood evaluations
 - 10^5 Cand., 10^{-2} s per likelihood evalution $\Rightarrow 10^9$ s Runtime
 - Atlas: 10^4 CPU cores $\Rightarrow 10^5$ s Cluster-time
 - Cluster time $\mathcal{O}(days)$
- What about subsequent stages?
 - Do not sig. increase runtime!

A fully coherent follow-up of **all** candidates is possible

- HierarchMC is only useful if it is fast
- Stage 2 req. $\approx 10^6$ likelihood evaluations
 - 10^5 Cand., 10^{-2} s per likelihood evalution $\Rightarrow 10^9$ s Runtime
 - Atlas: 10^4 CPU cores $\Rightarrow 10^5$ s Cluster-time
 - Cluster time $\mathcal{O}(days)$
- What about subsequent stages?
 - Do not sig. increase runtime!

A fully coherent follow-up of **all** candidates is possible

• Original Follow-up: Stage 2 and beyond took $\mathcal{O}(weeks)$ in human and cluster time

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Cand. Stage 2

Fake signals

Stage 4

Stage 5

Stage 6

Stage 7

Coherent

stage 3

 10^{6}

- Found viable configuration at the second stage
 - → Apply Hierarch MC to candidates from that stage
- Depth-first approach: All stages run back-to-back, results are collected at the end

- Found viable configuration at the second stage
 - → Apply Hierarch MC to candidates from that stage
- Depth-first approach: All stages run back-to-back, results are collected at the end

- Found viable configuration at the second stage
 - → Apply Hierarch MC to candidates from that stage
- Depth-first approach: All stages run back-to-back, results are collected at the end

20.06.2024 37

- Found viable configuration at the second stage
 - → Apply Hierarch MC to candidates from that stage
- Depth-first approach: All stages run back-to-back, results are collected at the end
- Recover all six hardware injections in band
- One remaining candidate

20.06.2024 38

Wrong RefTime	Late to the Meeting	Sampler converges on side peaks	"watch condor_release"
Having remaining candidates	That one cluster job that keeps running forever	Crashing a headnode	"of course it would be nice if these plots had meaningful titles"
Forgetting the mystery factor	Finding a CW	Thinking you found a CWbut you really haven't	All jobs going on hold immediately
Really understanding GCT	Wrong RefTime again	Installing LALSuite	Forgetting the mystery factoragain
Cluster Jobs not starting due to missing log directory	log10BtS? GLtL!?	"These hardware injections are quite loud"	Wildcard

The CW Bingo

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Jasper Martins

- Found viable configuration at the second stage
 - → Apply Hierarch MC to candidates from that stage
- Depth-first approach: All stages run back-to-back, results are collected at the end
- Recover all six hardware injections in band
- One remaining candidate \Rightarrow Uncleaned detector line in both

20.06.2024 40

Wrong RefTime	Late to the Meeting	Sampler converges on side peaks	"watch condor_release"
Having remaining candidates	That one cluster job that keeps running forever	Crashing a headnode	"of course it would be nice if these plots had meaningful titles"
Forgetting the mystery factor	Finding a CW	Thinking you found a CWbut you really haven't	All jobs going on hold immediately
Really understanding GCT	Wrong RefTime again	Installing LALSuite	Forgetting the mystery factoragain
Cluster Jobs not starting due to missing log directory	log10BtS? GLtL!?	"These hardware injections are quite loud"	Wildcard

The CW Bingo

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Jasper Martins

Summary

- UPS
- At it's core, HierarchMC implements a posterior-to-prior conversion
- as $10^{8}N_{\star}$
- We followed up 386,429 candidates from the reference search and get:
 - Significantly reduced computational and human cost
 - Coherent results on all candidates
 - Fewer false alarms

• HierarchMC is a novel, Bayesian Framework for large-scale, depth-first Monte Carlo follow-

• With the examined configuration, HierarchMC was applicable to per-candidate SRs as large

Future Plans

- Write the Paper!
- Application to earlier stages of all-sky searches \Leftrightarrow Push towards higher N_{\star}
 - Other sampling algorithms / proposal methods
 - Exploit caching optimizations from Grid-based searches
- Application to other searches
 - Binary systems
 - Directed Searches

Future Plans

- Write the Paper!
- Application to earlier stages of all-sky searches \Leftrightarrow Push towards higher N_{\star}
 - Other sampling algorithms / proposal methods
 - Exploit caching optimizations from Grid-based searches
- Application to other searches
 - Binary systems
 - Directed Searches

Dream: Run HierarchMC directly on Einstein@Home

Backup Slides: Parameter Estimation

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

Jasper Martins

20.06.2024 45

Backup Slides: PyFstat

- Based on ptemcee

 - May have trouble converging on multimodal posteriors
- Uses posterior samples as starting points at higher $T_{\rm COh}$, but the **same** priors

Figure 7 in Ashton and Prix (2018)

Jasper Martins

Continuous Gravitational Waves and Neutron Stars Workshop Hannover

• Harder to assess convergence in the **absence** of signals: When did we sample enough?

Backup Slides: Hardware Injections

$\mathrm{ID}_{\mathrm{inj}}$	$f_{ m inj}[{ m Hz}]$	$f_{ m inj}^{(1)}[{ m Hzs^{-1}}]$	$lpha_{ m inj}[{ m h:m:s}]$	$\delta_{ m inj}[m deg:m:s]$
Dist. to MLEs:	$\Delta f[{ m Hz}]$	$\Delta \dot{f} [{ m Hzs^{-1}}]$		Sky distance [deg:m:s]
Steltner et al. $[81]$	$\Delta f[\mathrm{Hz}]$	$\Delta \dot{f} [{ m Hzs^{-1}}]$		Sky distance [deg:m:s]
0	265.57505348	-4.15×10^{-12}	4:46:12.4628	-56:13:02.9490
	-4.6×10^{-09}	$9.0 imes 10^{-15}$		0:00:00.4012
	-4.7×10^{-11}	$9.5 imes 10^{-16}$		0:00:00.4011
2	575.16350527	-1.37×10^{-13}	14:21:01.4800	3:26:38.3626
	$3.4 imes 10^{-09}$	4.3×10^{-15}		0:00:00.2198
	-1.1×10^{-09}	-8.8×10^{-16}		0:00:00.0955
3	108.85715939	-1.46×10^{-17}	11:53:29.4178	-33:26:11.7687
	-4.6×10^{-09}	$2.4 imes 10^{-14}$		0:00:02.9579
	-6.7×10^{-10}	-5.8×10^{-16}		0:00:00.3080
5	52.80832436	-4.03×10^{-18}	20:10:30.3939	-83:50:20.9036
	$1.9 imes 10^{-09}$	$6.0 imes10^{-15}$		0:00:01.6488
	-6.2×10^{-10}	-4.2×10^{-16}		0:00:00.2212
9	763.84731649	-1.45×10^{-17}	13:15:32.5397	75:41:22.5205
	-6.0×10^{-09}	-9.48×10^{-15}		0:00:00.1649
	$9.4 imes 10^{-10}$	-5.60×10^{-17}		0:00:00.0023
10	26.33209638	-8.50×10^{-11}	14:46:13.3549	42:52:38.2953
	-6.7×10^{-09}	8.3×10^{-15}		0:00:03.9060
	-8.3×10^{-11}	2.4×10^{-16}		0:00:00.3109

Backup Slides: Failed Recovery

 10^{3}

Backup Slides: Side Peaks

Backup Slides: Grids vs. Posteriors

Jasper Martins

Backup Slides: Sampler Configuration

Option

 n_{live} $\Delta \log Z$ Bounding Sampler Walks per iter. Update interval Min. eff. Bootstrap Enlarge

	Setting
	1500
	0.1
	Multi-ellipsoids
	Random walk
•	25
\mathbf{l}	$2n_{ m live}$
	5%
	25
	1

Backup Slides: The F-Statistic Metric

• Second-order Taylor expansion of mismatch μ :

$$\mu(\vartheta_S, \vartheta_S + \Delta \vartheta) \coloneqq 1 - \frac{\rho^2(\vartheta_S + \Delta \vartheta)}{\rho^2(\vartheta_S)} \approx g_{ij} \Delta \vartheta_i \Delta \vartheta_j$$

Defines natural unit for search region volume

$$\operatorname{Vol}(\mathcal{R})[N_{\star}] := \sqrt{\det g_{ij}} \operatorname{Vol}(\mathcal{R})$$

• Approximately flat in frequency, spindown and sky position when projected to ecliptic plane

Figure 4 in Wette and Prix (2013)

Figure 10 in Wette and Prix (2013)

