

Searching for inspiraling planetary-mass primordial black holes in LIGO O3a data

Andrew L. Miller, Nancy Aggarwal, Federico De Lillo et al. arXiv:2402.19468 andrew.miller@nikhef.nl

Low spins of LIGO/Virgo black holes, and merging rate inferences have revived interest in PBHs

> BHs that formed in the early universe can take on a wide range of masses

Possible links to dark matter >

Primordial Black Holes

Green and Kavanagh. Journal of Physics G: Nuclear and Particle Physics 48.4 (2021): 043001.

Motivation

- Many GW efforts to detect PBHs focus on "sub-solar mass" regime, $\mathcal{O}(0.1M_{\odot})$
- > However, GWs from $[10^{-7}, 10^{-2}]M_{\odot}$ PBH binaries have not yet been searched for
- > Matched filtering in this mass range is extremely computationally challenging
 - Signals are long-lasting at LIGO frequencies —> many more templates needed for the same m_1, m_2 system if the system inspirals for longer

GWs from inspiraling PBHs

- The phase evolution of two objects far enough away from merger can be described by quasi-Newtonian circular orbits
- We analyze GW data looking for the phase evolution of the signal, characterized entirely by the chirp mass $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \text{ and signal frequency}$

"Transient" continuous waves

- Signal frequency evolution follows a power-law and lasts hours-days at LIGO frequencies
- Can describe GWs from the inspiral portion of a light-enough binary system, or from a system far from coalescence
- > How to search for these signals?

Gravitational waves from quasi-Newtonian orbit

 $\dot{f} = \frac{96}{5} \pi^{8/3} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/3} f^{11/3} \left[1 + \dots\right]$

 $f = \kappa f^n$

M: chirp mass f: frequency f: spin-up

Generalized Frequency-Hough

Detect power-law signals that slowly "chirp" in time

- Input: points in time/frequency detector plane ; look for power-law tracks
- Output: two-dimensional histogram in the frequency/chirp mass plane of the source

e frequency/chirp mass plane of the source Miller et al. Phys.Dark Univ. 32 (2021) 100836 7

O3a search for planetary-mass PBH binaries

Miller et al., arXiv: 2402.19468

Parameter Space

- Constructed by considering equalmass systems with: $\mathcal{M} \in [4 \times 10^{-5}, 10^{-2}] M_{\odot}; T_{\text{PM}} \in [1 \text{ h}, 7 \text{ d}]$; $T_{\text{FFT}} \in [2,30]$ s
- Sensitive to asymmetric mass-ratio systems $q = m_2/m_1 \approx \eta \in [10^{-7}, 10^{-4}]$ for $m_1 \sim \mathcal{O}(M_{\odot})$ as long as: $|f_{0PN}(t) - f_{3.5PN}(t)| \leq \frac{1}{T_{\text{FFT}}},$
- > We found ~300 candidates at 7σ but these were due to noise disturbances

Miller et al., arXiv: 2402.19468

Search details and results

- \sim 100 search configurations cover the parameter space, decided based on maximizing expect distance reach as a function of the source and search parameters
- > We analyze each frequency band for given observation time and FFT length over all of LIGO O3a data (SFDBs used)
- 10⁷ coincident candidates before any vetos
- > Apply threshold on average *CR* (accounting for trials factor) and line veto -> only 334 candidates with $CR_{thr} > 7$ with f_0 at least 1 bin away from noise line

f_{\min} (Hz)	$f_{ m max}$ (Hz)	$T_{ m obs}$ (s)	$T_{ m FFT}({ m s})$	${\cal M}_{ m min} \left(M_{\odot} ight)$	$\mathcal{M}_{ ext{max}}$
20	68	572600	29	5.9469×10^{-4}	8.7096 >
20	121	54700	9	1.0823×10^{-3}	8.7096 >
43	123	51400	9	1.0929×10^{-3}	1×1
44	126	48300	8	1.1031×10^{-3}	1×1
45	128	45400	8	1.1105×10^{-3}	1×1
46	131	42700	8	1.1105×10^{-3}	1×1
47	133	40100	7	1.1265×10^{-3}	1×1
				2	

Miller et al., arXiv: 2402.19468

Follow-up procedure

- Consider a grid around each candidate f_0 , \mathcal{M} > based on uncertainty ($\propto \delta f$)
- Demodulate data via heterodyning $h^{het}(t) = \operatorname{Re}[h(t)e^{-i\phi}]; \phi = \phi(f_0, \mathcal{M}, t)$
- Double $T_{\rm FFT}$ 5
- Apply original Frequency-Hough in a narrowband around candidate
- > Obtain new CR; check if $CR_{new} > CR_{old}$
- No candidates survived this procedure

Upper limits procedure

- Evaluate maximum distance reach based on coincident candidates' CR, M, and f₀
- Solution Apply Feldman-Cousins' approach and map CR to larger CR (assuming Gaussian noise) $d_{\max}^{95\%} \propto \mathcal{M}^{5/3} T_{\text{FFT}}^{3/4} T_{\text{obs}}^{-1/4} \left(\sum_{i}^{N} \frac{f_i^{4/3}}{S_n(f_i)} \right)^{1/2} \left(CR - \sqrt{2} \text{erfc}^{-1}(2\Gamma) \right)^{-1/2}$
- We compute d_{max} for each of the 10 million coincident candidates, in each configuration, at each time, and average them at each chirp mass

Upper limit procedure

▷ We ensure $|f_{0PN}(t) - f_{3.5PN}(t)| \le \frac{1}{T_{\text{FFT}}}$

> From d_{max} , compute the reachable space-time volume and rate density: $\langle VT \rangle = \frac{4}{3} \pi d_{\text{max}}^3 T_{\text{obs}}; \mathcal{R}_{95\%} = \frac{3.0}{\langle VT \rangle}$

Since we are sensitive to systems at ≤ 100 kpc, $\langle VT \rangle_{\text{comoving}} = \langle VT \rangle_{\text{euclidean}}$

Upper limits interpretation

> Our method only looks for the inspiral of two compact objects with masses m_1, m_2 . They make no assumptions about how they formed

After placing rate density upper limits, we assume that m₁, m₂ are PBHs, and constrain the fraction of DM that PBHs compose

Since we are sensitive to \mathcal{M} , we have the freedom to pick m_1, m_2 so long as higher-order contributions to \dot{f} are still small

First, we compute the maximum distance at which we could have seen a signal at 95% confidence

Then, we assume a uniform distribution of sources, and compute a rate density $\mathscr{R} \sim \left[\frac{4}{3}\pi d^3 T_{\text{obs}}\right]^{-1}$

Asymmetric-mass ratio PBHs

Asymmetric-mass ratio PBHs

Merger rates enhanced for PBHs in asymmetric mass ratio binaries

f(m): mass function

: fraction of DM that PBHs could compose

: binary suppression factor

▷ We can constrain \tilde{f} , or assuming $m_1 = 2.5M_{\odot}$, $f(m_1) \sim 1$, $f_{sup} = 1$, we can put upper limit on $f(m_2)$ Miller et al., arXiv: 2402.19468 16

Equal-mass PBH interpretation

> We can convert the constraint on rate density to an upper limit on the fraction of DM that PBHs could compose

> Assuming monochromatic mass functions $(f(m_{PBH}) = 1)$ and no rate suppression $(f_{sup} = 1)$, we can constrain f_{PBH} Miller et al., arXiv: 2402.19468 17

Conclusions

- A simple quasi-monochromatic or power-law signal model describes many types of sources
- Dark matter can be probed directly via its interactions with GW detectors without the need to design new instruments!
- GW detectors can constrain the existence of dark matter in the form of planetary-mass primordial black holes
- There is plenty of work to do on improving these results if interested, please contact me!

Backup slides

Search results

- Some candidates were found with high significance, but ultimately were due to noise disturbances
- In absence of detection, place upper limits
- Determine the maximum distance away that we could have seen a signal, and then use that to obtain a rate density estimate

Miller et al., arXiv: 2402.19468

Additional parameter space plots

