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Background
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Primordial Black Holes

Low spins of LIGO/Virgo black 
holes, and merging rate inferences 
have revived interest in PBHs 

BHs that formed in the early 
universe can take on a wide range of 
masses 

Possible links to dark matter
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Motivation
Many GW efforts to detect PBHs focus 
on “sub-solar mass” regime,  

However, GWs from  PBH 
binaries have not yet been searched for 

Matched filtering in this mass range is 
extremely computationally challenging 

Signals are long-lasting at LIGO 
frequencies—> many more templates 
needed for the same  system if 
the system inspirals for longer

𝒪(0.1M⊙)

[10−7,10−2]M⊙

m1, m2
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GWs from inspiraling PBHs

The phase evolution of two objects far 
enough away from merger can be 
described by quasi-Newtonian circular 
orbits 

We analyze GW data looking for the 
phase evolution of the signal, 
characterized entirely by the chirp mass 

  and signal frequency ℳ =
(m1m2)3/5

(m1 + m2)1/5
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“Transient” continuous waves

Signal frequency evolution follows 
a power-law and lasts hours-days 
at LIGO frequencies 

Can describe GWs from the 
inspiral portion of a light-enough 
binary system, or from a system far 
from coalescence 

How to search for these signals?
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Generalized Frequency-Hough

Detect power-law signals that slowly “chirp” in time 

Input: points in time/frequency detector plane ; look for power-law tracks 

Output: two-dimensional histogram in the frequency/chirp mass plane of the source
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fgw(t) = f0 [1 −
8
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κf8/3
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O3a search for planetary-mass 
PBH binaries
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Parameter Space
Constructed by considering equal-
mass systems with: 

;  s 

Sensitive to asymmetric mass-ratio 
systems  for 

 as long as: 

 

We found ~300 candidates at  but 
these were due to noise disturbances

ℳ ∈ [4 × 10−5,10−2]M⊙;  TPM ∈ [1 h,  7 d]
TFFT ∈ [2,30]

q = m2/m1 ≈ η ∈ [10−7,10−4]
m1 ∼ 𝒪(M⊙)

| f0PN(t) − f3.5PN(t) | ≤
1

TFFT
,

7σ
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Search details and results
 search configurations cover the parameter 

space, decided based on maximizing expect distance 
reach as a function of the source and search 
parameters   

We analyze each frequency band for given 
observation time and FFT length over all of LIGO 
O3a data (SFDBs used) 

 coincident candidates before any vetos 

Apply threshold on average  (accounting for trials 
factor) and line veto —> only 334 candidates with 

 with  at least 1 bin away from noise line

∼ 100

107

CR

CRthr > 7 f0
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Follow-up procedure

Consider a grid around each candidate  
based on uncertainty (  ) 

Demodulate data via heterodyning 
;  

Double  

Apply original Frequency-Hough in a narrow-
band around candidate 

Obtain new  ; check if  

No candidates survived this procedure

f0, ℳ
∝ δf

hhet(t) = Re[h(t)e−iϕ] ϕ = ϕ( f0, ℳ, t)

TFFT

CR CRnew > CRold
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Upper limits procedure

Evaluate maximum distance reach based on 
coincident candidates’ and  

Apply Feldman-Cousins’ approach and map 
 to larger  (assuming Gaussian noise)

 

We compute  for each of the 10 million 
coincident candidates, in each configuration, at 
each time, and average them at each chirp mass

CR, ℳ, f0

CR CR

d95%
max ∝ ℳ5/3T3/4

FFTT−1/4
obs (

N

∑
i

f 4/3
i

Sn( fi) )
1/2

(CR − 2erfc−1(2Γ))
−1/2

dmax
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Upper limit procedure

We ensure  

From , compute the reachable 
space-time volume and rate density: 

;  

Since we are sensitive to systems at 
, 

| f0PN(t) − f3.5PN(t) | ≤
1

TFFT

dmax

⟨VT⟩ =
4
3

πd3
maxTobs ℛ95% =

3.0
⟨VT⟩

≲ 100 kpc ⟨VT⟩comoving = ⟨VT⟩euclidean
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Upper limits interpretation

Our method only looks for the inspiral of two compact objects with 
masses . They make no assumptions about how they formed 

After placing rate density upper limits, we assume that  are 
PBHs, and constrain the fraction of DM that PBHs compose  

Since we are sensitive to , we have the freedom to pick  so 
long as higher-order contributions to  are still small

m1, m2

m1, m2

ℳ m1, m2·f
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Asymmetric-mass ratio PBHs

First, we compute the maximum distance at which we could have seen a signal at 95% confidence 

Then, we assume a uniform distribution of sources, and compute a rate density ℛ ∼ [ 4
3

πd3Tobs]
−1
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Asymmetric-mass ratio PBHs

Merger rates enhanced for PBHs in asymmetric mass ratio binaries 

We can constrain , or assuming , we can put upper limit on f̃ m1 = 2.5M⊙, f(m1) ∼ 1,fsup = 1 f(m2)
16

f̃ 53/37 ≡ fsup f(m1)f(m2)f 53/37
PBH
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ℛ = 5.28 × 10−7 kpc−3yr−1 ( m1

M⊙ )
−32/37

( m2

m1 )
−34/37

f̃ 53/37,

: mass 
function

f(m)

: fraction of 
DM that PBHs 
could compose

fPBH

: binary 
suppression factor

fsup

f̃ 53/37 ≡ fsup f(m1)f(m2)f 53/37
PBH



Equal-mass PBH interpretation

We can convert the constraint on rate density to an upper limit on the fraction of DM that PBHs could compose 

Assuming monochromatic mass functions ( ) and no rate suppression ( ), we can constrain f(mPBH) = 1 fsup = 1 fPBH
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f̃ 53/37 ≡ fsup f(m1)f(m2)f 53/37
PBH

ℛ = 1.04 × 10−6 kpc−3yr−1 ( mPBH

M⊙ )
−32/37

f̃ 53/37 .
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Conclusions
A simple quasi-monochromatic or power-law signal model describes 
many types of sources 

Dark matter can be probed directly via its interactions with GW 
detectors without the need to design new instruments! 

GW detectors can constrain the existence of dark matter in the form of 
planetary-mass primordial black holes 

There is plenty of work to do on improving these results — if 
interested, please contact me!
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Backup slides
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Search results
Some candidates were found with 
high significance, but ultimately 
were due to noise disturbances 

In absence of detection, place 
upper limits 

Determine the maximum distance 
away that we could have seen a 
signal, and then use that to obtain 
a rate density estimate
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Additional parameter space plots
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