$-mmNNMmOzGraw$

ARC Centre of Excellence for Gravitational Wave Discovery

Ornella J. Piccinni

18 June 2024 ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) and Centre for Gravitational Astrophysics, The Australian National University, Canberra, Australia

Australian National
University

a ~5-year summary for the "Continuous gravitational waves and neutron stars workshop" AEI Hannover, Germany

Gravitational wave searches with the Band-Sampled-Data framework

The main outcome of my PhD project supervised by **Sergio Frasca** + many inputs from the Rome Virgo group

SFT, SFDB, BSD Files formats for CW analysis

• Some of the analyses carried out by the LIGO-Virgo CW groups do not use the LIGO version

- of the SFT files
- The main starting data products are the so-called **SFDB** files (Short-Fourier Transform DataBase)
- The **Band-Sampled-Data files** (BSD) are sub-products of the SFDB files
-
- use BSD-based pipelines

• A version of these input files is produced using both Virgo and LIGO data (BSD and SFDB)

• For O4 analyses, several groups (Rome1 and 2, IFAE, UCLouvain, Nikhef, Manitoba, ANU) will

2

• The starting point to produce these files are the frames files (.gwf) of the main channel

A simple scheme From SFDB to BSD

3

SFDB: P. Astone et al 2005 CQG 22 S1197 BSD: O. J. Piccinni et al 2019 CQG 36 015008

A (less) simple scheme From SFDB to BSD

• Let's assume that we know how to produce the SFDB...

Adds-on BSD features

- Extra time-domain cleaning procedure (in addition to the "Rome-gating" F. Acernese et al 2009 CQG 26 204002) for very high disturbances (<3%)
- Basic information ready for diagnosis and analyses:
	- ✓time-frequency maps (*peakmaps*)
	- ✓persistency
	- ✓time-frequency histograms
	- ✓ASDs, spectrograms
	- ✓info about the files, detector position and velocity (SSB)

O. J. Piccinni et al 2019 CQG 36 015008

the fundamental bsd_lego function The BSD bricks

- possibility to combine the data in a lego way (starting from bricks of 10Hz/1 month)
	- For targeted searches, the preferable combination is a *small frequency band* and whole run
	- For long transients, *wider frequency bands* and *shorter times*
	- Directed searches can use the *standard* 10 Hz configuration
- New configurations are being tested: e.g. overlapping bands between two months
- Some configurations are limited for sampling reasons and should be handled with care (or after a systematic study of these cases)

6

• The BSD can be easily manipulated allowing the use of **any FFT length** in a more straightforward way

What's the advantage

• The SFDB are built with fixed FFT lengths

7

The (reduced-)analytic signal

• One of the secrets of the BSD files: we are manipulating a complex and (reduced-)analytic signal

• This allows us to apply the so-called heterodyne corrections just by multiplying the data with

 $dt'.$

-
- exponential complex phase
- any modeled frequency variation can be turned into a heterodyne correction e.g.

• spin-down:
$$
\phi_{sd}(t) = 2\pi \int_{t_0}^t \left[\dot{f}_0(t'-t_0) + \frac{1}{2} \ddot{f}_0(t'-t_0)^2 + \dots \right]
$$

• doppler:
$$
\phi_d(t) = 2\pi \int_{t_0}^t f_0(t') \frac{\vec{v} \cdot \hat{n}}{c} dt' \approx \frac{2\pi}{c} p_{\hat{n}}(t) f_0(t).
$$

- This can be applied to the (complex) data as
- After the demodulation, we can increase the coherence time of a hierarchical search

$$
sh_{corr}(t) = h(t)e^{i\phi(t)}
$$

8

A prototype search

- A generic BSD pipeline might use a combination of the following steps:
	- bsd_lego: to eventually **combine the data** in time or frequency domain
	- heterodyne: to **demodulate the signal** and e.g. increase the coherence time (also as an FU step) Targeted BSD methods (5-vec, ensembles)
	- bsd_peakmap: to **build the time-frequency map** with the desired FFT length
		- peakmap projection (histogram over frequency) BSD excess power methods (PBHs, DPDM, BC)
	- bsd_hough: to **map the peakmap into** (*f* 0, BSD FH methods (GC, SNR, all-sky NS) ;
F *f* 0)

9

BSD pipelines roadmap

5-vector method can be used

BSD pipelines references

- GC (directed): Abbott et al. PRD 106, 042003 (2022); Piccinni et al. PRD 101, 082004 (2020)
- SNR (directed): Abbott et al. ApJ 921 80 (2021);
-
-
- BSD COBI PBH (all-sky & directed) **see Marc's talk on Wednesday**
- 5-vector semi-coherent (directed): D'Antonio et al. PRD 108, 122001 (2023)
- 5-vector ensemble (targeted): D'Onofrio et al. PRD 108, 122002 (2023) & PRD 105,063012 (2022)
-
- FH isolated NS (all-sky) adapted to the BSD framework: paper in preparation

• Scalar boson clouds (all-sky): Abbott et al. PRD 105, 102001 (2022); D'Antonio PRD 98, 103017 (2018)

• Excess power DPDM (all-sky): Abbott et al. PRD 105, 063030 (2022); Miller et al. PRD 103, 103002 (2021)

• 5-vector (targeted) - adapted to the BSD framework: Abbott et al. ApJL 902 L21 (2020) & ApJ 935 1 (2022)

11

Some O3 results

Abbott et al. - PRD 105, 102001(2022) O3 scalar boson clouds

- standard BSD configuration 10Hz/1month
- Peakmap creation new FFT length
- Peakmap correction (peaks shifts, loop over sky)
- Peakmap histogram (moving average)

Frequency range: $[20 - 610]$ $\rm Hz$ spin-down/up range: 1 bin around zero Data: full O3 clean data (April 2019 - March 2020)

all-sky

D'Antonio et al. Phys. Rev. D 98, 103017 (2018)

O3 scalar boson clouds

○ distance reach of the search: how far we can exclude the presence of an emitting system given the null detection results

○ exclusion regions in the BH-boson mass plane

BH spir BH spin = 0.9 $O.9$

> BH spin = 0.5 BH spin \bigcup

Astrophysical interpretation of null results:

- standard BSD configuration 10Hz/1month
- Partial heterodyne Doppler correction
- new peakmap + FH based method
- Sum of monthly FH of 10 Hz each

Frequency range: $[10 - 2000]$ $\rm Hz$ min spin-down: $-1.8 \times 10^{-8} \, \mathrm{Hz/s}$ spin-up: $1\times10^{-10}\rm\,Hz/s$ Data: full O3 clean data (April 2019 - March 2020)

15

O3 GC search - setup Abbott et al PRD 106, 042003 (2022)

$$
Sky position (Sgr A*):
$$

$$
\alpha = 4.650 \text{ rad } \delta = -0.506 \text{ rad}
$$

Piccinni et al., PRD, 101, 082004 (2020)

O3 GC search Best ho UL 7.6 × 10⁻²⁶ at 140 Hz Disclaimer: Interpretation depends on the BH population in the GC and NS population? or DM? actual ages and/or formation rates $10⁰$ 10^{-12} • $t_{\text{age}} = 10^3 \text{ yr}$ $\epsilon = 7 \times 10^{-4} \left(\frac{I_{\text{fid}}}{I_3} \right) \left(\frac{h_0}{10^{-24}} \right) \left(\frac{100 \text{ Hz}}{f} \right)^2$ 10^{-1} $t_{\text{age}} = 10^5 \text{ yr}$ $t_{\text{age}} = 10^7 \text{ yr}$ 10^{-2} boson mass [eV] $\epsilon = 7.3 \times 10^{-7}$ 10^{-3} I₃=I_{fid} (normal) 10^{-4} 10^{-5} $I_3 = 5I_{\text{fid}}$ $D=8~kpc$ BH spin $= 0.5$ 10^{-6} $\epsilon < 10^{-6}$ 10^{-13} 10 20 30 50 60 70 80 90 40 10^{-7} black hole mass [solar masses] $10²$ $10³$ 10

Semi-coherent method + spin-up range: boson clouds exclusion regions ¹⁶

Conclusions

- The Band-Sampled-Data (BSD) framework has emerged as a powerful tool in the search for GW signals
- The tool has been instrumental in various searches for both standard CW signals and dark matter candidates
- One of the key strengths of the BSD framework lies in its ability to handle data effectively
- Over the past five years, it has evolved significantly, offering a comprehensive suite of functions for analyzing GW data
- Its foundational functions provide a solid basis for implementing search methods tailored to specific research goals
- The framework is still far from being perfect and some limitations need to be overcome
- Of course, there is plenty of room for improvement!

Backup

SFDB cleaning

• identify the presence of "events" in the high-passed data (using a threshold and AR procedure to

- SFDB have a different sampling/duration than LIGO SFT
- Furthermore an extra cleaning technique is used:
	- Removal of glitches using a bilateral high-pass filter
	- estimate mean and standard deviation of the data)
	- subtract from the original data the high-passed data corresponding to the glitch times
- Cleaning is also described in this pa[per](https://wiki.ligo.org/pub/CW/RomeFrequencyHough/0264-9381_26_20_204002.pdf) and in the FH review page
- Time-domain glitches affect the whole frequency band!

The SFDB cleaning and the SFTs

- An extensive study of the impact of this cleaning on LIGO data has been done by Pa[ol](http://iopscience.iop.org/1742-6596/228/1/012006/pdf/1742-6596_228_1_012006.pdf)a [Le](http://iopscience.iop.org/1742-6596/228/1/012006/pdf/1742-6596_228_1_012006.pdf)aci and [Pep Cov](https://dcc.ligo.org/DocDB/0163/G1901816/001/SFDB_XLAL.pdf)as
- the cleaning has been integrated into some of the SFT-production software (see Leaci)
- Also the SFT seem to benefit from this cleaning procedure (~5 noise floor level)
- Test by Covas show a significant increase of the detection efficiency in the SkyHough (at depth 32: 0.87 -> 0.93 efficiency)
- SFDB can be read by LAL: XLALReadSFDB