

Long-term pulsar timing solutions with joint radio and gamma-ray analyses support searches for gravitational waves

Lars Nieder Collaborators: M. Burgay, C. Clark, P. Freire 18. June 2024

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Photon detected: time, direction, energy

Typical Gamma-ray Pulsar Properties

Credit: J. Wu

Folding Gamma-ray Data

• Phase model (counted in rotations):

$$\Phi = ft_{\rm psr} + \frac{1}{2}\dot{f}t_{\rm psr}^2$$

- Assign every photon with the pulsar's rotational phase at emission
- Need to account for Doppler shift

Credit: Pletsch+ (2012)

Search tools

Pletsch, H. J., & Clark, C. J. 2014, ApJ, 795, 75

Data set (~several years)

Hierarchical multi-stage search:

- 24 days Semi-coherent stages Efficiently scan large parameter spaces
- Fully coherent follow-up in finer grid
- Include power in higher harmonics

Computing resources:

Zooming in

- ATLAS computing cluster at AEI
- Einstein@Home project using volunteer computer's idle time

Generation of efficient grid:

 Utilization of distance metric Second order approximation of expected signal-to-noise loss

24 days

CW follow-ups

PSR J0952-0607

- follow-up search
- black widow pulsar
- extremely fast spinning (707Hz)

2 Pulses of Best Profile

CW follow-up in O1data

<section-header>

Credit: Bassa+2017,Nieder+2019

PSR J1653-0158

- partially-informed search
- black widow pulsar
- tight orbit (75min, 0.01lts)
- CW follow-up in O1 & O2 data

radio vs gamma

- targeting source
- gaps between observations
- high signal-to-noise ratio
- precise TOA
- (usual) time span: detection last observation
- TS: chi2

- continuous, all-sky data
- unaffected by material
- sparse
- photons
- time span: 2008 today
- TS: H-test & logL

Transients and **Pu**lsars with MeerKAT

MeerKAT:

- 64 x 13.5m radio interferometer in South Africa
- ~5x more sensitive than Parkes

TRAPUM:

- Large Survey Project using MeerKAT
- Search for new pulsars in globular clusters, SNRs/PWNe/ TeV sources, nearby galaxies and Fermi UNIDs

TRAPUM discoveries

L-band survey in Fermi sources

- Clark et al. 2023, MNRAS, 519, 5590

- 79 sources observed
- Nine new MSPs
 - one isolated
 - two redbacks
 - six other binary pulsars

 Six discovered in gamma-ray followup folding or searching

radio profiles

Rotational phase

Gamma-ray pulsars

Timing campaign

Using MeerKAT, Parkes,

Effelsberg, Nançay

- Pseudo-log cadence
- SeeKAT for position
- Avoiding eclipses for RBs

PSR	Data span (MJD)	MK obs#	PKS obs#	NCY obs#	EFF obs#	MK tobs	PKS tobs (h)	NCY tobs (h)	EFF tobs (h)	nToA
J1036-4353	59536 - 60015	20	15	-	-	1.7	29.8	-	-	180
J1526-2744	59304 - 59432	-	6	7	-	-	9.3	6.3	-	71
J1623-6936	59250 - 59683	23	14	-	_	2.2	14.6	-	-	178
J1709-0333	59304 - 60084	20	4	-	2	1.8	6.1	-	3.4	151
J1757-6032	59250 - 59725	29	12	-	-	4.1	13.9	-	-	310
J1803-6707	59197 - 59624	2	19	-	_	1.4	11.0	-	-	204
J1823-3544	59250 - 59684	19	9	10	-	1.8	9.7	7.4	-	259
J1858-5424	59250 - 59759	37	6	-	-	6.0	6.1	-	-	275
J1906-1754	59250 - 60148	43	5	-	20	4.0	6.1	-	48.9	285

Problems in timing analysis

Usually iterative timing approach works fine

- Keeping some parameters fixed for each data
- Iterations until convergence
- Radio and gamma-ray data disagreed on sky position for some of the parameters
 - Could use posteriors from one timing run as prior for the next
 - Could do timing analysis jointly on both data

Joint timing - method

Using MCMC to explore

parameter space

- maximise joint logL
- using emcee & PINT
- Gamma likelihood
 - wrapped Gaussian peaks
 - joint marginalisation of template and pulsar pars
- Radio "likelihood"
 - joint marginalisation of jumps and pulsar pars

$$\log \mathscr{L} = \log \mathscr{L}_{\text{prior}} + \log \mathscr{L}_{\text{gamma}} + \log \mathscr{L}_{\text{radio}}$$
$$= \log \mathscr{L}_{\text{prior}} + \log \mathscr{L}_{\text{gamma}} - 0.5 \times \chi^{2}_{\text{radio}}$$

Joint timing – results (1)

Example: J1757-6032

Joint radio and gamma-ray analyses can support searches for continuous gravitational waves & in pulsar timing arrays

