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Sources of CW-Signals: a Quick Reminder

• (Rapidly) spinning neutron stars with mass-quadrupolar deformations => 
equatorial ellipticity (ε)


• Various non-radial oscillation modes, e.g., r-mode, g-mode, f-mode, in old and 
newly born neutron stars 


• Ideal test beds: 


➡ spinning neutron stars in “messy environments”, e.g., NS in accreting 
binaries, LMXB systems


➡ newly born neutron star that has yet to settle down to its long-term 
structures, e.g., supernova remnants 


➡ Unknown sources of special interests, e.g., galactic centre, globular 
clusters, etc. 
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Here I will specifically focus on Sco X-1, a known accreting NS in LMXB system



Scorpius X-1: the Brightest Extra-Solar 
X-Ray Source in the Sky

• Scorpius X-1 (Sco X-1) is the brightest extra-solar X-ray sources in the sky


• A low-mass X-ray binary (LMXB) system with a companion with mass ~ 0.42 Msun 


• X-ray and optical spectra from Sco X-1 suggests it harbours a neutron star as the 
primary object 


• High X-ray luminosity => proxy for high mass-accretion rate => plausible large 
non-axisymmetric deformation


• Torque balance scenario: accretion induced spin-up torque = spin-down torque 
combined by all the dissipative mechanisms


• Certain astrophysical properties and spin-distributions of neutron stars advocates for 
strong CW emission as one of the most natural braking mechanisms
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Sco X-1 Source Properties
• Although the brightest and persistent X-ray emitter, NO pulsation is seen from Sco X-1 

[Galaudage et al., MNRAS 509, 1745 (2022)] 


• Optical and radio observations have measured different orbital parameters to a varied 
degrees of accuracies 


• Eccentricity is well constrained:
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Ref: Messenger et al., 
PRD 92, 023006 (2015)

Note: these observations are old now, and 
a new set of refined source parameter 
space has been reported in T. L. Killestein 
et. al., MNRAS 520, 5317–5330 (2023)

Galloway et al., ApJ 781:14 (2014); 
Cherepashchuk et al., MNRAS 508, 1389 (2021); 

Killestein et. al., MNRAS 520, 5317 (2023)


e ≤ 0.0132



Searching for a CW-Signal From Sco X-1

• Problem at hand: detecting a CW-signal from Sco X-1


• The source emits quasi-monochromatic continuous gravitational waves in 
its rest frame 


➡ However, its spin-frequency is completely unknown 


• Being in a stellar binary system, the CW-signal goes through significant 
doppler modulations 


➡ We need to search over the orbital parameters of the binary system
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Sco X-1 Search Results
• Sco X-1 has been searched extensively in GW detectors, including Advanced-LIGO, 

Advanced-VIRGO, KAGRA over a couple of decades 


• However, only recently we have been able to beat the torque-balance limit in the low-
frequency regime (< 200 Hz)
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Ref: R. Abbott et al., ApJL 941:L30 (2022) Ref: Y. Zhang et al., ApJL 906:L14 (2021) 

B. Abbott et al., PRD 76, 082001 (2007); J. Aasi et al., PRD 91, 062008 (2015); B. P. Abbott et al., PRD 
100, 122002 (2019); Y. Zhang et al., ApJL 906:L14 (2021); R. Abbott et al., ApJL 941:L30 (2022) 

• Recent searches with updated source parameters of Killestein et. al. (2023)
Whelan et al., ApJ, Vol.  949, Issue 2, id.117 (2023); Vargas & Melatos, arXiv:2310.19183



Spin Frequency of Accreting NSs
• Accreting neutron stars (in LMXBs) are generally fast spinning objects; frequency in 

[200, 700 Hz]


• Accretion transfer (+ve) angular momentum to the NSs, acts as the primary mechanism 
for spin-up 


• Sco X-1 is one of the highest accreting NS LMXB systems; it likely to host a rapidly 
spinning neutron star, possibly in the range of ~ 300 — 700 Hz
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Ref: A. Patruno, et al., ApJ 850:106 (2017)

Histogram of accreting neutron stars comprising 
all known AMXPs and NXPs.

KDE estimates of all known accreting 
neutron stars (AMXPs + NXPs).

D. Chakrabarty, AIPC Proc., Vol. 1068, pp. 67-74 (2008); A. Patruno, et al., 
ApJ 850:106 (2017)



Searching for a CW-Signal From Sco X-1 
[Revisited …]

• Problem at hand: detecting a CW-signal from Sco X-1


• The source emits quasi-monochromatic continuous gravitational waves in 
its rest frame 


➡ However, its spin-frequency is completely unknown 


• Being in a stellar binary system, the CW-signal goes through significant 
doppler modulations 


➡ We need to search over the orbital parameters of the binary system
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The target parameter space becomes enormous 
due to limited observational constraints!



A New Search Pipeline for Sco X-1: 
BinaryWeave

9



Overview: BinaryWeave
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• This is a semi-coherent CW search pipeline for signals from a spinning neutron 
star in binary system with known sky-position


• The primary target is Sco X-1 over a wide range of frequency band and orbital 
parameter space


• However, it can be used for directed searches from other binary systems with 
known sky-position (including other LMXBs)


• This pipeline is developed following the method in Leaci & Prix, PRD 91, 
102003 (2015)  


• The pipeline has been implemented in the “WEAVE-infrastructure” initially 
developed by K. Wette and R. Prix [K. Wette et al., PRD 97, 123016 (2018)] 
(see: [K. Wette at LVC-meeting, Glasgow (2016); DCC: <LIGO-G1601794-v2])

https://dcc.ligo.org/LIGO-G1601794


Basic Structure
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• The entire observation time is split into N number of segments


• Each segments is searched with match-filtering the data against a bank of 
templates of phase/doppler-parameters (denoted by, λ)


• Results in well-known coherent F-statistic for each of the N segments by 
maximising over the four amplitude-parameters (denoted by, ) 


• Sum over the F-statistic values from those N-segments incoherently to get the 
final semi-coherent F-statistic distribution


• Search over the source parameter space (P): orbital-parameters (asini, porb, 
tasc) along with freq (CW-frequency), etc., … 

𝒜
JKS, PRD 58, 063001 (1998); R. Prix, PRD 75, 023004 (2007)



Weave Modus Operandi
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• Tile (near) optimal covering lattice A*n or usual Z*n lattice grids in D-dim search 
parameter space (P) for each coherent-segment [R. Prix, PRD 75, 023004 (2007), R. 
Prix, LVC CW F2F (Ref: 8)]


• Perform coherent F-statistic searches at each of the lattice points in P 


• Sum over the F-statistic values from those N-segments incoherently to get the final 

semi-coherent F-statistic distribution


• While summing one can opt for either nearest-neighbor interpolation for 
each of the coherent segments [K. Wette, PRD 90, 122010 (2014)]


• OR exactly at the same lattice points in parameter space (non-interpolating) 
Developer: K. Wette, R. Prix

BinaryWeave presently incorporates only the non-interpolating searches.



Optimal Covering Lattice
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• One of the primary goals is to put templates on A*n lattice-grid


• A*n is optimal/near-optimal covering lattice for D = 2, …, 16 dimensions [ref: 4] 

Dimension 3 4 5 6 7

Efficiency 1.9 2.8 4.3 6.8 10.9

• This results in saving computational cost to search a signal over wide 
parameter space

Compared to Z*n, the efficiency of coverage for A*n  is:



Constant Metric Requirement for A*n 
Lattice Tiling
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In the long segment limit (Tobs >> Porb) the 
coherent metric is defined as : 

where, Δma = tmid - tasc 
and ΔT = segment length

[Leaci & Prix, PRD 91, 102003 (2015)]



Implement a New Coordinate System for Lattice Tiling
15

• Old (i.e., observer/user) set of coordinates are  

• We get a new set of coordinates for lattice/internal param-space 

The coordinate transformation 
functions

� := {ap,⌦, tasc,, ⌘}
<latexit sha1_base64="K5wVc1NcLJQr4UXZLUj0sbMYc8A=">AAACHXicbVDLSgNBEJz1bXxFPXoZDIIHCbui+ABB9OJNBaNCNiy9k04cMrs7zPQKYcmXePFXvHhQ8eBF/BsnMQdfBQNFVTU9XbFW0pLvf3gjo2PjE5NT06WZ2bn5hfLi0qXNciOwJjKVmesYLCqZYo0kKbzWBiGJFV7FneO+f3WLxsosvaCuxkYC7VS2pAByUlTeDpULN4HvH/Cw4BAVurfBw9ME27DBKSrAir7QAa2dECIBD3tRueJX/QH4XxIMSYUNcRaV38JmJvIEUxIKrK0HvqZGAYakUNgrhblFDaIDbaw7mkKCtlEMzuvxNac0eSsz7qXEB+r3iQISa7tJ7JIJ0I397fXF/7x6Tq3dRiFTnROm4mtRK1ecMt7vijelQUGq6wgII91fubgBA4JcoyVXQvD75L+ktlndqwbnW5XDo2EbU2yFrbJ1FrAddshO2BmrMcHu2AN7Ys/evffovXivX9ERbzizzH7Ae/8EsCOgkw==</latexit><latexit sha1_base64="K5wVc1NcLJQr4UXZLUj0sbMYc8A=">AAACHXicbVDLSgNBEJz1bXxFPXoZDIIHCbui+ABB9OJNBaNCNiy9k04cMrs7zPQKYcmXePFXvHhQ8eBF/BsnMQdfBQNFVTU9XbFW0pLvf3gjo2PjE5NT06WZ2bn5hfLi0qXNciOwJjKVmesYLCqZYo0kKbzWBiGJFV7FneO+f3WLxsosvaCuxkYC7VS2pAByUlTeDpULN4HvH/Cw4BAVurfBw9ME27DBKSrAir7QAa2dECIBD3tRueJX/QH4XxIMSYUNcRaV38JmJvIEUxIKrK0HvqZGAYakUNgrhblFDaIDbaw7mkKCtlEMzuvxNac0eSsz7qXEB+r3iQISa7tJ7JIJ0I397fXF/7x6Tq3dRiFTnROm4mtRK1ecMt7vijelQUGq6wgII91fubgBA4JcoyVXQvD75L+ktlndqwbnW5XDo2EbU2yFrbJ1FrAddshO2BmrMcHu2AN7Ys/evffovXivX9ERbzizzH7Ae/8EsCOgkw==</latexit><latexit sha1_base64="K5wVc1NcLJQr4UXZLUj0sbMYc8A=">AAACHXicbVDLSgNBEJz1bXxFPXoZDIIHCbui+ABB9OJNBaNCNiy9k04cMrs7zPQKYcmXePFXvHhQ8eBF/BsnMQdfBQNFVTU9XbFW0pLvf3gjo2PjE5NT06WZ2bn5hfLi0qXNciOwJjKVmesYLCqZYo0kKbzWBiGJFV7FneO+f3WLxsosvaCuxkYC7VS2pAByUlTeDpULN4HvH/Cw4BAVurfBw9ME27DBKSrAir7QAa2dECIBD3tRueJX/QH4XxIMSYUNcRaV38JmJvIEUxIKrK0HvqZGAYakUNgrhblFDaIDbaw7mkKCtlEMzuvxNac0eSsz7qXEB+r3iQISa7tJ7JIJ0I397fXF/7x6Tq3dRiFTnROm4mtRK1ecMt7vijelQUGq6wgII91fubgBA4JcoyVXQvD75L+ktlndqwbnW5XDo2EbU2yFrbJ1FrAddshO2BmrMcHu2AN7Ys/evffovXivX9ERbzizzH7Ae/8EsCOgkw==</latexit>

[AM, Prix & Wette, PRD  
107, 062005 (2023)]

ap = ap
vp = ap × Ω = 2π(ap/Porb)

dasc = ap × Ω × tasc = vp × tasc

κp = ap × κ
ηp = ap × η



• Each of the metric coefficient is nearly-
constant now. 


• Internally we use 

 
coordinates to perform lattice-tiling


• For the remaining parameters (f and Δma) 
we put templates in a conservative way 


• We set f = fmax and Δma = max(Δma) over 
the search range


• Good approximation when, Δf << f and 
ΔTasc << Δma 

The Metric in the New Lattice Coordinate
16

Corresponding non-zero terms in the 
new form of metric are 

[AM, Prix & Wette, PRD  107, 062005 (2023)]



Injection-Recovery: 1-D Template Banks 
17

9

(a) (b)

(c) (d)

FIG. 1. Illustration of 1D template-bank searches around a noiseless signal injection, with the respective three remaining
search parameters fixed to the injected signal. The filled circles mark the placement of templates and their corresponding
measured F̂-statistic values, while the star marks the signal injection point with its corresponding perfect-match F̂-statistic.
The template bank was constructed for a maximum mismatch of µmax = 0.05, with N = 120 segments of �T = 3d. The
horizontal dashed line denotes the F̂-value corresponding to the maximum-mismatch criterion Eq. (25) relative to the injected
signal power.

the theoretical bulk predictions by factors up to 2� 3 at
low template counts, with increasingly good agreement at
higher template counts. This is e↵ect is expected from
the extra padding required to fully cover parameter-space
boundaries @P, which decreases in relative importance
the higher the total template counts (i.e., the smaller the
templates are compared to the parameter-space extents).

2. Computing cost and memory usage

A detailed computing-cost (and memory) model exists
for the semi-coherentWeave implementation [37] as well
as for the underlying coherent F-statistic implementation
[67]. There are two di↵erent F-statistic algorithms avail-
able, the resampling FFT algorithm (originally described

in [43]), and the so-called demodulation algorithm intro-
duced in [63, 68]. Because the resampling F-statistic is
substantially faster for large numbers of frequency bins
(i.e., O (100 � 1000)), which is the relevant regime for
the wide parameter-space search considered here, we will
exclusively consider this algorithm for the following dis-
cussion of the Sco X-1 computing cost 1.
We performed the BinaryWeave tests and sim-

ulations on the LDAS computing cluster at the
LIGO Hanford Observatory, containing a combination

1 A GPU port of the resampling F-statistic [69], which yields
speedup factors of O (10 � 100), was developed after this study
had been performed. A practical application of the GPU resam-
pling F-statistic with Weave can be found in [53].



Injection-Recovery: 2-D Template Banks 18
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FIG. 2. Illustration of 2D template-bank searches around a noiseless signal injection, with the respective two remaining search
parameters fixed to the injected signal. The filled circles mark the placement of templates and their corresponding measured F̂-
statistic values, while the star marks the signal injection point with its corresponding perfect-match F̂-statistic. The template
bank was constructed for a maximum mismatch of µmax = 0.05, with N = 120 segments of �T = 3d. The horizontal mesh
grid denotes the F̂-value corresponding to the maximum-mismatch criterion Eq. (25) relative to the injected signal power.

of 2.4GHz Xeon E5-2630v3, 2.2GHz Xeon E5-2650v4,
3.5GHz Xeon E3-1240v5 and 3.0GHz Xeon Gold 6136

CPUs. We find the resulting semi-coherent timing co-
e�cients measured on this hardware are essentially the
same as given in Table. III of [37], while the e↵ective
(resampling-FFT) F-statistic time per template and de-
tector is observed to fall in the range ⌧ e↵F ⇡ (3.8� 4.3)⇥

10�7 s, consistent with the numbers obtained in [37].

We measure the CPU run-time per template Ct and the
maximum memory usage of BinaryWeave for the 40
box searches describe in the previous section (see Fig. 5).
The maximum memory usage over all search boxes is
found as ⇠ 2.2GB, well below all-sky Weave numbers
observed in [38], due to the fact that Sco X-1 has lit-
tle refinement and we can use a non-interpolating search
setup, substantially alleviating memory requirements.

[AM, Prix & Wette, PRD  
107, 062005 (2023)]



Mismatch Distribution: Semi-Coherent Case
19

Mismatch (µ) is defined as: 
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FIG. 3. Distribution of coherent per-segment mismatches µ0 (left plot) and semi-coherent mismatches µ̂0 (right plot), obtained
from 1000 simulated 3D searches over a small box in f , ap and tasc around the injected signals (with Porb fixed at its injection
value), with parameters drawn randomly from the test range P0 defined in Table. II. The template bank was constructed for a
maximum mismatch of µmax = 0.5, with N = 30 segments of �T = 1d.

FIG. 4. Distribution of coherent per-segment mismatches µ0 (left plot) and semi-coherent mismatches µ̂0 (right plot), obtained
from 1000 simulated simulated 4D searches over a small box in f, ap, tasc and Porb around the injected signals, with parameters
drawn randomly from the test range P0 defined in Table. II. The template bank was constructed for a maximum mismatch of
µmax = 0.5, with N = 30 segments of �T = 1d.

Maximum mismatch (μmax) = 0.5

Semi-coherent mismatch distribution for the 4D template bank 
searching {Freq, asini, Porb, tasc} for an injected signal

Tobs = 30 days, Tseg = 1 day

1000 randomly drawn samples 

for injection-recovery test ever


large parameter space: P0

μ =
ρ2(𝒜, λs; λs) − ρ2(𝒜, λs; λ)

ρ2(𝒜, λs; λs)

P0

Freq: 10 —700 Hz 

Asini: 0.3 — 3.5 lt-sec 


Porb: 68023.7  0.2 sec

Tasc: 1124044455  1000 sec

±
±

[MPW, PRD  107, 062005 (2023)]



Results From Two Realistic Search 
Setups 

20

• Example of BinaryWeave pipeline characteristics and timing 
model for two search setups: 
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FIG. 6. CPU run-time CP per search box as a function of the number of (semi-coherent) templates N̂4D for that box, for search
setup-I (left plot) and search setup-II (right plot), defined in Table. I. The points ’⇥’ (AM: should probably be ’+’) mark
the measured BinaryWeave run times, while the solid line indicates the e↵ective cost model prediction of Eq. (29), using an
e↵ective cost per template of Ct = 0.145ms.

Search setup Tobs �T N µmax D90%
pfa D95%

pfa D99%
pfa

[months] [days] [1/
p
Hz] [1/

p
Hz] [1/

p
Hz]

search setup-I 6 1 180 0.031 77 72 60
search setup-II 12 3 120 0.056 116 107 91

TABLE I. Example search setups with corresponding estimated sensitivity depth, assuming a (per-template) false-alarm prob-
ability of pfa = 10�10 and detection confidences pdet = 90%, 95%, and 99%, respectively. The sensitivity estimate uses the
measured (4D) mismatch distributions obtained for each setup.

B. Computing cost for di↵erent search scenarios

Here we present CPU computing cost in terms of
core hours, and million core hours (Mh), referring to
the mix of CPU hardware used in the present study,
cf. Sec. IVC2. Another interesting unit used in [36]
is Einstein@Home months (EM), which was defined as
12 000 (average) CPU cores running on Einstein@Home
[39] for 30 days. If one assumes the (current) average
Einstein@Home CPU to be roughly comparable to the
one used here, one can convert 1EM ⇡ 8.6Mh. A mea-
sure of computing cost used for clusters in the LIGO Sci-
entific Collaboration is the so-called service unit (SU),
which refers to one core-hour specifically on an Intel

Xeon E5-2670 processor. One can obtain a detailed SU
conversion factors for di↵erent CPUs, and for the hard-
ware mix used in this study we find a conversion factor
of 1.46 SU/h Arunava: check, maybe refs? .

Let us first consider the example of the Sco X-1 pa-

rameter space P1 considered in Leaci and Prix [36] (cf.
Table II) with two di↵erent search setups (I and II)
of Table. I. For search setup-I with 180 ⇥ 1 d seg-
ments and mismatch µmax = 0.031, the total num-
ber of (4D) templates given by Eq. (27) is N4D =
5.84 ⇥ 1014. Using the e↵ective computing-cost model
of Eq. (29) this results in a total CPU runtime of
CP1 [search setup-I] ⇡ 8.46 ⇥ 1010 s = 23.5Mh. Us-
ing the above conversion factors, this would correspond
to 2.7EM or 34.3MSU check . Similarly, for search

setup-II with 120 ⇥ 3 d segments and mismatch of
µmax = 0.056, we obtain a template count of N4D =
1.07 ⇥ 1015 and a corresponding total CPU runtime of
CP1 [search setup-II] ⇡ 1.56 ⇥ 1011 s = 43.2Mh, which
we can also express as 5.0EM or 63MSU.

Next we consider a number of additional parameter-
space scenarios, listed in Table. II. The constraints from
optical and radio emission observations come from dif-
ferent sources in the literature [18, 57], with the most
recent values given in [58, 73]. Future observations are

Table I

[MPW, PRD  107, 062005 (2023)]



Mismatch Distribution: Small Mismatch Test
21

Semicoherent mismatch distribution for the 4D template bank searching {freq, asini, period, tasc} for 
an injected signal

❖Two sets of 500 randomly drawn injection-recovery samples for small mismatch maximum 
mismatch (μmax) = 0.05: 

Search Setup-I Search Setup-II

[MPW, PRD  107, 062005 (2023)]



Number of Templates
22

Number of templates (= N  ) can be calculated as: 

n: number of dimensionwhere, 

µmax: maximum mismatch

Total number of templates for the 4D search 
of {freq, asini, period, tasc} is: 
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In the following we present the results of injection-
recovery tests, first illustrating the template grids for
single-parameter (1D) and two-parameters (2D) searches,
then systematically testing the mismatch distribution
for 3D searches (for a non-resolved period uncertainty
�Porb) and full 4D searches.

1. Testing 1D and 2D lattice tilings

In order to illustrate and visualize the lattice tiling,
we first consider simple one- and two-dimensional lattice
cases, which also serves as a basic sanity check for the
template bank construction. The 1D searches are per-
formed along all four coordinate axis in a neighborhood
around the signal injection, with the three remaining pa-
rameters fixed to the injection values, with one example
shown in Fig. 1. The 2D searches are performed along
all six two-parameter combinations out of the four, with
the remaining two parameters fixed to the injected signal
location, with one example shown in Fig. 2.

These results illustrate the maximum-mismatch crite-
rion of Eq. 25 being satisfied, as well as placing only one
template in the “vicinity” < µmax of the signal as desired
for an e�cient template bank.

2. Testing 3D and 4D lattice tilings

Next we test the template-bank performance for the
four possible combinations of three search parameters
(3D searches) with the fourth one fixed to the signal in-
jection parameter, as well as 4D searches over all four
parameters {f, ap, Porb, tasc}. We perform several sets of
simulations, using ⇠ O (100 � 1000) injections each, us-
ing varying search setups and maximum mismatch values
µmax , in order to obtain the resulting mismatch distri-
bution of the template bank.

The injected signal parameters are randomly drawn
from the test range P0 (cf. II), namely f 2 [10, 700]Hz
and binary parameter ranges wider than the Sco X-1 con-
straints, namely ap 2 [0.3�3.5] ls, Porb = 68 023.7 ± 0.2 s
and tasc = 1124 044 455.0 ± 1000.0GPS s.

Figure 3 shows an example for the mismatch distribu-
tions of coherent and semi-coherent mismatches obtained
for a set of 1000 injections and subsequent 3D searches
in a small box around the injection in f , ap and tasc,
with Porb fixed to the injected value. Figure 4 presents
a corresponding example for the mismatch distributions
obtained from 1000 4D box searches around the injected
signals.

We see that the means of the coherent and semicoher-
ent mismatch distributions are hµi ⇡ hµ̂i ⇡ 0.17 � 0.18,
and the highest observed semicoherent mismatch in the
3D case is max µ̂0 ⇡ 0.4, while in the 4D case it is
max µ̂0 ⇡ 0.35. This is smaller than the imposed maxi-
mummismatch of µmax = 0.5, which is a common feature
of the quadratic approximation Eq. (9) underlying the

metric, namely the measured mismatch values µ0 tend
to increasingly fall behind the predicted metric mismatch
values with increasing mismatch [e.g., see 64–66].

C. Required computing resources

1. Number of templates

As discussed in Sec. II C, the bulk template count for
a parameter space P (not counting any extra templates
required for boundary padding of @P) is given by Eq. 10.

Using the metric expressions in Eq. (14), this can be
evaluated explicitly [36] and the bulk template count for
3D searches over {f, ap, tasc} is found as

N̂3D =
✓3

µ3/2
max

⇡3�T
p
27

⌦ (f3
max � f3

min) (a
2
p,max � a2p,min)

⇥(tasc,max � tasc,min),
(26)

while for a 4D template bank over {f, Porb, ap, tasc} one
finds

N̂4D =
✓4

µ2
max

⇡4��T 2

36
p
2

(f4
max � f4

min)(ap
3
,max � ap

3
,min)

⇥(⌦2
max � ⌦2

min)(tasc,max � tasc,min),
(27)

where the coordinate ranges are �i
2 [�i

min,�
i
max], and

� is the semi-coherent refinement factor associated with
the Porb (i.e., ⌦), given by

� =

s

1 + 12
(�

2
ma � �2

ma)

�T 2
. (28)

The refinement factor evaluates to � = N in the case of
segments without gaps. We can use these theoretical ex-
pressions to test against the actual number of templates
generated by the BinaryWeave code, which includes
boundary padding not accounted for in the above theo-
retical expressions.
In the following we consider two example search setups

(cf. Table I), namely search setup-I with N = 180
segments of duration �T = 1d and a maximum mis-
match of µmax = 0.031, and search setup-II with
N = 120 segments of �T = 3d and maximum mismatch
µmax = 0.056.
We generate a BinaryWeave template bank for a

small box around a randomly-chosen point in f and ap,
drawn from the test range P0 of Table. II. The box con-
sist of O

�
105

�
frequency bins and a metric bounding-box

extent D�i (cf. Eq. (12)) along each binary-orbital pa-
rameter dimension. The is repeated 40 times, and the
obtained BinaryWeave template counts are compared
to the theoretical predictions of (27), shown in Fig. 5.
We see that there is generally good agreement in the

template counts, with the real template counts exceeding
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In the following we present the results of injection-
recovery tests, first illustrating the template grids for
single-parameter (1D) and two-parameters (2D) searches,
then systematically testing the mismatch distribution
for 3D searches (for a non-resolved period uncertainty
�Porb) and full 4D searches.

1. Testing 1D and 2D lattice tilings

In order to illustrate and visualize the lattice tiling,
we first consider simple one- and two-dimensional lattice
cases, which also serves as a basic sanity check for the
template bank construction. The 1D searches are per-
formed along all four coordinate axis in a neighborhood
around the signal injection, with the three remaining pa-
rameters fixed to the injection values, with one example
shown in Fig. 1. The 2D searches are performed along
all six two-parameter combinations out of the four, with
the remaining two parameters fixed to the injected signal
location, with one example shown in Fig. 2.

These results illustrate the maximum-mismatch crite-
rion of Eq. 25 being satisfied, as well as placing only one
template in the “vicinity” < µmax of the signal as desired
for an e�cient template bank.

2. Testing 3D and 4D lattice tilings

Next we test the template-bank performance for the
four possible combinations of three search parameters
(3D searches) with the fourth one fixed to the signal in-
jection parameter, as well as 4D searches over all four
parameters {f, ap, Porb, tasc}. We perform several sets of
simulations, using ⇠ O (100 � 1000) injections each, us-
ing varying search setups and maximum mismatch values
µmax , in order to obtain the resulting mismatch distri-
bution of the template bank.

The injected signal parameters are randomly drawn
from the test range P0 (cf. II), namely f 2 [10, 700]Hz
and binary parameter ranges wider than the Sco X-1 con-
straints, namely ap 2 [0.3�3.5] ls, Porb = 68 023.7 ± 0.2 s
and tasc = 1124 044 455.0 ± 1000.0GPS s.

Figure 3 shows an example for the mismatch distribu-
tions of coherent and semi-coherent mismatches obtained
for a set of 1000 injections and subsequent 3D searches
in a small box around the injection in f , ap and tasc,
with Porb fixed to the injected value. Figure 4 presents
a corresponding example for the mismatch distributions
obtained from 1000 4D box searches around the injected
signals.

We see that the means of the coherent and semicoher-
ent mismatch distributions are hµi ⇡ hµ̂i ⇡ 0.17 � 0.18,
and the highest observed semicoherent mismatch in the
3D case is max µ̂0 ⇡ 0.4, while in the 4D case it is
max µ̂0 ⇡ 0.35. This is smaller than the imposed maxi-
mummismatch of µmax = 0.5, which is a common feature
of the quadratic approximation Eq. (9) underlying the

metric, namely the measured mismatch values µ0 tend
to increasingly fall behind the predicted metric mismatch
values with increasing mismatch [e.g., see 64–66].

C. Required computing resources

1. Number of templates

As discussed in Sec. II C, the bulk template count for
a parameter space P (not counting any extra templates
required for boundary padding of @P) is given by Eq. 10.

Using the metric expressions in Eq. (14), this can be
evaluated explicitly [36] and the bulk template count for
3D searches over {f, ap, tasc} is found as

N̂3D =
✓3

µ3/2
max

⇡3�T
p
27

⌦ (f3
max � f3

min) (a
2
p,max � a2p,min)

⇥(tasc,max � tasc,min),
(26)

while for a 4D template bank over {f, Porb, ap, tasc} one
finds

N̂4D =
✓4

µ2
max

⇡4��T 2

36
p
2

(f4
max � f4

min)(ap
3
,max � ap

3
,min)

⇥(⌦2
max � ⌦2

min)(tasc,max � tasc,min),
(27)

where the coordinate ranges are �i
2 [�i

min,�
i
max], and

� is the semi-coherent refinement factor associated with
the Porb (i.e., ⌦), given by

� =

s

1 + 12
(�

2
ma � �2

ma)

�T 2
. (28)

The refinement factor evaluates to � = N in the case of
segments without gaps. We can use these theoretical ex-
pressions to test against the actual number of templates
generated by the BinaryWeave code, which includes
boundary padding not accounted for in the above theo-
retical expressions.
In the following we consider two example search setups

(cf. Table I), namely search setup-I with N = 180
segments of duration �T = 1d and a maximum mis-
match of µmax = 0.031, and search setup-II with
N = 120 segments of �T = 3d and maximum mismatch
µmax = 0.056.
We generate a BinaryWeave template bank for a

small box around a randomly-chosen point in f and ap,
drawn from the test range P0 of Table. II. The box con-
sist of O

�
105

�
frequency bins and a metric bounding-box

extent D�i (cf. Eq. (12)) along each binary-orbital pa-
rameter dimension. The is repeated 40 times, and the
obtained BinaryWeave template counts are compared
to the theoretical predictions of (27), shown in Fig. 5.
We see that there is generally good agreement in the

template counts, with the real template counts exceeding

with,
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FIG. 5. Number of semicoherent templates N̂ constructed by BinaryWeave versus with the theoretical bulk predictions of
Eq. (27). Each point ‘+’ corresponds to a simulated 4D-box search around a randomly chosen parameter-space location in
{f, ap} 2 P0 (cf. Table II) using either search setup-I (left plot) or search setup-II (right plot) defined in Table I).

The runtime per template Ct is found to be
relatively constant over the search parameter
space and for the two search setups considered,
namely Ct(search setup-I) ⇡ 0.12 ± 0.03ms and
Ct(search setup-II) ⇡ 0.14 ± 0.03ms. Here we only
consider the non-interpolating StackSlide method, in
which the coherent segments and the semi-coherent
F̂-statistic share the same template grid and number of
templates N , i.e., N = N = N̂ . This implies that both
the coherent and semi-coherent contributions to the
total computing cost are proportional to N . Therefore
we can use a simplified e↵ective model for the total
computing cost CP over a search space P in the form

CP = NP Ct, (29)

where NP is the total number of templates covering the
parameter space P. Given the above timing measure-
ments for the two setups, in the following we assume a
(slightly conservative) e↵ective CPU time per template
of Ct = 0.145ms. This simplified e↵ective cost model is
plotted against the measured BinaryWeave run times
in Fig. 6.

V. CHARACTERIZING POTENTIAL SCO X-1
SEARCHES

A. Sensitivity for di↵erent search setups

The sensitivity of a search is typically characterized
by the weakest signal amplitude hpdet

pfa
detectable at a

false-alarm probability pfa with detection probability (or
“confidence level”) pdet. While this is astrophysically in-
formative, for a given search method it is often more in-
structive [70] to use the sensitivity depth D

pdet
pfa

instead,
defined as

D
pdet
pfa

⌘

p
Sn

hpdet
pfa

, (30)

which characterizes the sensitivity of a method indepen-
dently of the noise floor (i.e., power spectral density) Sn.
As discussed in [70, 71], the sensitivity of a semi-

coherent StackSlide F̂-statistic search can be estimated
quite accurately (to better than ⇠ 10%) given the to-
tal amount of data used, the number N of semi-coherent
segments and the mismatch distribution of the template
bank. This algorithm is implemented in the OctApps

[72] function SensitivityDepthStackSlide().
For each search setup listed in Table. I we obtain the

mismatch distribution empirically by injection-recovery
Monte-Carlo simulation (similar to what is shown in
Fig. 4), and use this to estimate the expected sensitivity
depth for each setup. We use a canonical value of pfa =
10�10 (as was done in [36]) for the single-template false-
alarm probability, which represents a somewhat typical
false-alarm scale for wide parameter-space searches. We
quote the sensitivity depth for pdet = 90%, 95% and
99%. The former two are typical confidence-levels used
for upper limits obtained in CW searches, while the last
one might be interesting, for example, if one is interested
in rejecting the torque-balance hypothesis in some pa-
rameter range at high confidence.
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FIG. 5. Number of semicoherent templates N̂ constructed by BinaryWeave versus with the theoretical bulk predictions of
Eq. (27). Each point ‘+’ corresponds to a simulated 4D-box search around a randomly chosen parameter-space location in
{f, ap} 2 P0 (cf. Table II) using either search setup-I (left plot) or search setup-II (right plot) defined in Table I).

The runtime per template Ct is found to be
relatively constant over the search parameter
space and for the two search setups considered,
namely Ct(search setup-I) ⇡ 0.12 ± 0.03ms and
Ct(search setup-II) ⇡ 0.14 ± 0.03ms. Here we only
consider the non-interpolating StackSlide method, in
which the coherent segments and the semi-coherent
F̂-statistic share the same template grid and number of
templates N , i.e., N = N = N̂ . This implies that both
the coherent and semi-coherent contributions to the
total computing cost are proportional to N . Therefore
we can use a simplified e↵ective model for the total
computing cost CP over a search space P in the form

CP = NP Ct, (29)

where NP is the total number of templates covering the
parameter space P. Given the above timing measure-
ments for the two setups, in the following we assume a
(slightly conservative) e↵ective CPU time per template
of Ct = 0.145ms. This simplified e↵ective cost model is
plotted against the measured BinaryWeave run times
in Fig. 6.

V. CHARACTERIZING POTENTIAL SCO X-1
SEARCHES

A. Sensitivity for di↵erent search setups

The sensitivity of a search is typically characterized
by the weakest signal amplitude hpdet

pfa
detectable at a

false-alarm probability pfa with detection probability (or
“confidence level”) pdet. While this is astrophysically in-
formative, for a given search method it is often more in-
structive [70] to use the sensitivity depth D

pdet
pfa

instead,
defined as

D
pdet
pfa

⌘

p
Sn

hpdet
pfa

, (30)

which characterizes the sensitivity of a method indepen-
dently of the noise floor (i.e., power spectral density) Sn.
As discussed in [70, 71], the sensitivity of a semi-

coherent StackSlide F̂-statistic search can be estimated
quite accurately (to better than ⇠ 10%) given the to-
tal amount of data used, the number N of semi-coherent
segments and the mismatch distribution of the template
bank. This algorithm is implemented in the OctApps

[72] function SensitivityDepthStackSlide().
For each search setup listed in Table. I we obtain the

mismatch distribution empirically by injection-recovery
Monte-Carlo simulation (similar to what is shown in
Fig. 4), and use this to estimate the expected sensitivity
depth for each setup. We use a canonical value of pfa =
10�10 (as was done in [36]) for the single-template false-
alarm probability, which represents a somewhat typical
false-alarm scale for wide parameter-space searches. We
quote the sensitivity depth for pdet = 90%, 95% and
99%. The former two are typical confidence-levels used
for upper limits obtained in CW searches, while the last
one might be interesting, for example, if one is interested
in rejecting the torque-balance hypothesis in some pa-
rameter range at high confidence.

Number of semicoherent templates N4D constructed by BinaryWeave versus with the theoretical predictions. 
Each point ‘+’ corresponds to a simulated 4D-box search around a randomly chosen parameter-space location. 
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FIG. 6. CPU run-time CP per search box as a function of the number of (semi-coherent) templates N̂4D for that box, for search
setup-I (left plot) and search setup-II (right plot), defined in Table. I. The points ’⇥’ (AM: should probably be ’+’) mark
the measured BinaryWeave run times, while the solid line indicates the e↵ective cost model prediction of Eq. (29), using an
e↵ective cost per template of Ct = 0.145ms.

Search setup Tobs �T N µmax D90%
pfa D95%

pfa D99%
pfa

[months] [days] [1/
p
Hz] [1/

p
Hz] [1/

p
Hz]

search setup-I 6 1 180 0.031 77 72 60
search setup-II 12 3 120 0.056 116 107 91

TABLE I. Example search setups with corresponding estimated sensitivity depth, assuming a (per-template) false-alarm prob-
ability of pfa = 10�10 and detection confidences pdet = 90%, 95%, and 99%, respectively. The sensitivity estimate uses the
measured (4D) mismatch distributions obtained for each setup.

B. Computing cost for di↵erent search scenarios

Here we present CPU computing cost in terms of
core hours, and million core hours (Mh), referring to
the mix of CPU hardware used in the present study,
cf. Sec. IVC2. Another interesting unit used in [36]
is Einstein@Home months (EM), which was defined as
12 000 (average) CPU cores running on Einstein@Home
[39] for 30 days. If one assumes the (current) average
Einstein@Home CPU to be roughly comparable to the
one used here, one can convert 1EM ⇡ 8.6Mh. A mea-
sure of computing cost used for clusters in the LIGO Sci-
entific Collaboration is the so-called service unit (SU),
which refers to one core-hour specifically on an Intel

Xeon E5-2670 processor. One can obtain a detailed SU
conversion factors for di↵erent CPUs, and for the hard-
ware mix used in this study we find a conversion factor
of 1.46 SU/h Arunava: check, maybe refs? .

Let us first consider the example of the Sco X-1 pa-

rameter space P1 considered in Leaci and Prix [36] (cf.
Table II) with two di↵erent search setups (I and II)
of Table. I. For search setup-I with 180 ⇥ 1 d seg-
ments and mismatch µmax = 0.031, the total num-
ber of (4D) templates given by Eq. (27) is N4D =
5.84 ⇥ 1014. Using the e↵ective computing-cost model
of Eq. (29) this results in a total CPU runtime of
CP1 [search setup-I] ⇡ 8.46 ⇥ 1010 s = 23.5Mh. Us-
ing the above conversion factors, this would correspond
to 2.7EM or 34.3MSU check . Similarly, for search

setup-II with 120 ⇥ 3 d segments and mismatch of
µmax = 0.056, we obtain a template count of N4D =
1.07 ⇥ 1015 and a corresponding total CPU runtime of
CP1 [search setup-II] ⇡ 1.56 ⇥ 1011 s = 43.2Mh, which
we can also express as 5.0EM or 63MSU.

Next we consider a number of additional parameter-
space scenarios, listed in Table. II. The constraints from
optical and radio emission observations come from dif-
ferent sources in the literature [18, 57], with the most
recent values given in [58, 73]. Future observations are
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FIG. 6. CPU run-time CP per search box as a function of the number of (semi-coherent) templates N̂4D for that box, for search
setup-I (left plot) and search setup-II (right plot), defined in Table. I. The points ’⇥’ (AM: should probably be ’+’) mark
the measured BinaryWeave run times, while the solid line indicates the e↵ective cost model prediction of Eq. (29), using an
e↵ective cost per template of Ct = 0.145ms.

Search setup Tobs �T N µmax D90%
pfa D95%

pfa D99%
pfa

[months] [days] [1/
p
Hz] [1/

p
Hz] [1/

p
Hz]

search setup-I 6 1 180 0.031 77 72 60
search setup-II 12 3 120 0.056 116 107 91

TABLE I. Example search setups with corresponding estimated sensitivity depth, assuming a (per-template) false-alarm prob-
ability of pfa = 10�10 and detection confidences pdet = 90%, 95%, and 99%, respectively. The sensitivity estimate uses the
measured (4D) mismatch distributions obtained for each setup.

B. Computing cost for di↵erent search scenarios

Here we present CPU computing cost in terms of
core hours, and million core hours (Mh), referring to
the mix of CPU hardware used in the present study,
cf. Sec. IVC2. Another interesting unit used in [36]
is Einstein@Home months (EM), which was defined as
12 000 (average) CPU cores running on Einstein@Home
[39] for 30 days. If one assumes the (current) average
Einstein@Home CPU to be roughly comparable to the
one used here, one can convert 1EM ⇡ 8.6Mh. A mea-
sure of computing cost used for clusters in the LIGO Sci-
entific Collaboration is the so-called service unit (SU),
which refers to one core-hour specifically on an Intel

Xeon E5-2670 processor. One can obtain a detailed SU
conversion factors for di↵erent CPUs, and for the hard-
ware mix used in this study we find a conversion factor
of 1.46 SU/h Arunava: check, maybe refs? .

Let us first consider the example of the Sco X-1 pa-

rameter space P1 considered in Leaci and Prix [36] (cf.
Table II) with two di↵erent search setups (I and II)
of Table. I. For search setup-I with 180 ⇥ 1 d seg-
ments and mismatch µmax = 0.031, the total num-
ber of (4D) templates given by Eq. (27) is N4D =
5.84 ⇥ 1014. Using the e↵ective computing-cost model
of Eq. (29) this results in a total CPU runtime of
CP1 [search setup-I] ⇡ 8.46 ⇥ 1010 s = 23.5Mh. Us-
ing the above conversion factors, this would correspond
to 2.7EM or 34.3MSU check . Similarly, for search

setup-II with 120 ⇥ 3 d segments and mismatch of
µmax = 0.056, we obtain a template count of N4D =
1.07 ⇥ 1015 and a corresponding total CPU runtime of
CP1 [search setup-II] ⇡ 1.56 ⇥ 1011 s = 43.2Mh, which
we can also express as 5.0EM or 63MSU.

Next we consider a number of additional parameter-
space scenarios, listed in Table. II. The constraints from
optical and radio emission observations come from dif-
ferent sources in the literature [18, 57], with the most
recent values given in [58, 73]. Future observations are

CPU run-time CP per search box as a function of the number of (semi-coherent) templates N4D for that box, for 
search setup-I (left plot) and search setup-II (right plot), defined in Table. II. The points ’+’ mark the 
measured BinaryWeave run times, while the solid line indicates the effective cost model prediction, using an 
effective cost per template of Ct = 0.145ms. 
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FIG. 5. Number of semicoherent templates N̂ constructed by BinaryWeave versus with the theoretical bulk predictions of
Eq. (27). Each point ‘+’ corresponds to a simulated 4D-box search around a randomly chosen parameter-space location in
{f, ap} 2 P0 (cf. Table II) using either search setup-I (left plot) or search setup-II (right plot) defined in Table I).

The runtime per template Ct is found to be
relatively constant over the search parameter
space and for the two search setups considered,
namely Ct(search setup-I) ⇡ 0.12 ± 0.03ms and
Ct(search setup-II) ⇡ 0.14 ± 0.03ms. Here we only
consider the non-interpolating StackSlide method, in
which the coherent segments and the semi-coherent
F̂-statistic share the same template grid and number of
templates N , i.e., N = N = N̂ . This implies that both
the coherent and semi-coherent contributions to the
total computing cost are proportional to N . Therefore
we can use a simplified e↵ective model for the total
computing cost CP over a search space P in the form

CP = NP Ct, (29)

where NP is the total number of templates covering the
parameter space P. Given the above timing measure-
ments for the two setups, in the following we assume a
(slightly conservative) e↵ective CPU time per template
of Ct = 0.145ms. This simplified e↵ective cost model is
plotted against the measured BinaryWeave run times
in Fig. 6.

V. CHARACTERIZING POTENTIAL SCO X-1
SEARCHES

A. Sensitivity for di↵erent search setups

The sensitivity of a search is typically characterized
by the weakest signal amplitude hpdet

pfa
detectable at a

false-alarm probability pfa with detection probability (or
“confidence level”) pdet. While this is astrophysically in-
formative, for a given search method it is often more in-
structive [70] to use the sensitivity depth D

pdet
pfa

instead,
defined as

D
pdet
pfa

⌘

p
Sn

hpdet
pfa

, (30)

which characterizes the sensitivity of a method indepen-
dently of the noise floor (i.e., power spectral density) Sn.
As discussed in [70, 71], the sensitivity of a semi-

coherent StackSlide F̂-statistic search can be estimated
quite accurately (to better than ⇠ 10%) given the to-
tal amount of data used, the number N of semi-coherent
segments and the mismatch distribution of the template
bank. This algorithm is implemented in the OctApps

[72] function SensitivityDepthStackSlide().
For each search setup listed in Table. I we obtain the

mismatch distribution empirically by injection-recovery
Monte-Carlo simulation (similar to what is shown in
Fig. 4), and use this to estimate the expected sensitivity
depth for each setup. We use a canonical value of pfa =
10�10 (as was done in [36]) for the single-template false-
alarm probability, which represents a somewhat typical
false-alarm scale for wide parameter-space searches. We
quote the sensitivity depth for pdet = 90%, 95% and
99%. The former two are typical confidence-levels used
for upper limits obtained in CW searches, while the last
one might be interesting, for example, if one is interested
in rejecting the torque-balance hypothesis in some pa-
rameter range at high confidence.

• Sensitivity Depths (with per-template false-alarm probability ‘pfa’ and 
detection probability ‘pdet’) is defined as: 

• Sensitivity Depths for 6 different search setups at ‘pfa’ = 10-10 are: 
14

Search setup Tobs �T N µmax D90%
pfa D95%

pfa D99%
pfa

[months] [days] [1/
p
Hz] [1/

p
Hz] [1/

p
Hz]

search setup-I 6 1 180 0.031 77 72 60
search setup-II 12 3 120 0.056 116 107 91
search setup-III 6 3 60 0.025 96 89 75
search setup-IV 12 1 360 0.025 93 86 73
search setup-V 6 10 18 0.025 120 111 94
search setup-VI 12 10 36 0.025 150 138 117

TABLE I. Example search setups with corresponding estimated sensitivity depth, assuming a (per-template) false-alarm prob-
ability of pfa = 10�10 and detection confidences pdet = 90%, 95%, and 99%, respectively. The sensitivity estimate uses the
measured (4D) mismatch distributions obtained for each setup.

Search space P f [Hz] ap [ls] Porb [s] tasc [GPS s] Reference(s)/comment(s)
P0 10–700 0.3–3.5 68023.7 ± 0.2 1124044455.0 ± 1000 BinaryWeave test range
P1 20–500 1.26–1.62 68023.70496 ± 0.0432 897753994 ± 100 Leaci and Prix [36]
P2 60–650 1.45–3.25 68023.86048 ± 0.0432 974416624 ± 50 Abbott et al. [28]
P3 40–180 1.45–3.25 68023.86 ± 0.12 1178556229 ± 417 Zhang et al. [29]
P4 600–700
P5 1000–1100
P6 1400–1500 1.45–3.25 68023.70496 ± 0.0432 974416624 ± 100 di↵erent ranges in frequency
P7 20–250 with broad range in ap

P8 20–1000
P9 20–1500
P10 600–700
P11 1000–1100
P12 1400–1500 1.40–1.50 68023.70496 ± 0.0432 974416624 ± 100 di↵erent ranges in frequency
P13 20–500 with narrow range in ap

P14 20–1000
P15 20–1500
P16 600–700
P17 1000–1100
P18 1400–1500 1.44–1.45 68023.70496 ± 0.0432 974416624 ± 100 di↵erent ranges in frequency
P19 20–500 with well-constrained ap

P20 20–1000
P21 20–1500

TABLE II. Di↵erent parameter space search regions considered for Sco X-1. P0 has been used in this study as a test range
for various Monte-Carlo tests of BinaryWeave. P1�3 represent observational constraints considered in recent CW searches
and studies. In addition, various combinations of parameter-ranges are considered, P4�21, in order to explore the impact of
improved observation constraints and reduced search ranges.

and 20 � 1500Hz). Finally, we consider both a 3D (for
an unresolved period uncertainty �Porb) and 4D search
for all cases considered.

The resulting computing cost estimates for all combi-
nations of the two setups (I and II), 3D or 4D template
bank, and di↵erent parameter spaces P1�21 are given
in Table. III. We note that while some required com-
puting budgets may seem unrealistically large, a recent
GPU port [53] of the F-statistic and Weave can yield
speedups by factors of several hundreds, making many
more setups fall within reach of currently available com-
puting resources.

C. Sensitivity versus computing cost

In addition to considering various fixed search scenar-
ios as in the previous two subsections, it is also instructive
to study how the achievable sensitivity varies as a func-
tion of the invested computing cost. This would generally
involve a (3- or 4-dimensional) optimization problem over
all search-setup parameters (see [36, 40]) which is beyond
the scope of this study, so we consider a simpler problem
of varying the maximal template-bank mismatch µmax .
In a sense, this provides a lower limit on the achievable
sensitivity at any given cost, as one could always improve
sensitivity further by varying all three setup parameters
{µmax , N,�T} at fixed cost.

The search space is chosen as P2, and we use again

Table II
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Fig: Lower-limit of search sensitivity as a function of computational cost is shown here. The left panel 
corresponds to search setup-I (Tobs = 180 days, Tseg = 1 day) and the right-panel corresponds to 
search setup-II (Tobs = 360 days, Tseg = 3 days). 
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FIG. 7. Sensitivity depth Dpdet
pfa as a function of (4D) computing cost CP for varying maximum mismatch µmax at fixed

segments (N,�T ), assuming Sco X-1 parameter space P2 of Table II. Sensitivity depth is estimated for a fixed (per-template)
false-alarm of pfa = 10�10 and di↵erent confidence levels of pdet = 90% (top), pdet = 95% (middle) and pdet = 99% (bottom).
Segment setup is N ⇥ �T = 180 ⇥ 1 d (left plot), and 120 ⇥ 3 d (right plot), corresponding to search setup-I and search
setup-II, respectively (cf. Table I). The dashed lines correspond to the sensitivity estimate assuming a theoretical A⇤

n lattice
mismatch-distribution, while the diamond markers correspond to using the measured BinaryWeave mismatch distributions.
Computing cost is measured in million core hours (Mh).

a given search, based on the known analytic template-
count models.

Putting these pieces together, we illustrate expected
sensitivity depths for BinaryWeave assuming di↵erent
search setups, and we estimate the corresponding re-
quired computing costs for a number of di↵erent Sco X-1
parameter-space regions of interest.

One of the primary goals of developing BinaryWeave

is to perform searches for Sco X-1 that can beat the
torque-balance limit over as wide a frequency range as
possible, and are able to take advantage of any large
available computing budget. Still, at the current level
of electromagnetic constraints on the Sco X-1 parame-
ters, reaching the torque-balance limit over the full fre-
quency range remains computationally prohibitive. Fu-
ture improvements in these constraints will be immensely
impactful to increase the chances of detecting a CW sig-
nal from Sco X-1 (or other LMXBs), as illustrated in
Sec. VB.

ACKNOWLEDGMENTS

AM acknowledges Stuart Anderson, Keith Riles, Dan
Moraru, Duncan Macleod, James Clark and several other
members in computing and software team of the LIGO
Scientific Collaboration (LSC). AM is thankful to Heinz-
Bernd Eggenstein for learning some of the advanced com-
putational skills. AM also acknowledges computational
assistance by Henning Fehrmann and Carsten Aulbert.
AM is thankful to Grant David Meadors and several
other past and present members of the continuous-waves
working group of the LSC regarding general discussion
on detectibility of CW signal from Sco X-1. We thank
Pep Covas and Paola Leaci for helpful feedback on the
manuscript.
This work has utilized the LDAS computing clusters

at the LIGO Hanford Observator (LHO) CalTech LIGO
centre (CIT) and the ATLAS computing cluster at the
MPI for Gravitational Physics Hannover. AM acknowl-
edges support from the DST-SERB Start-up Research
Grant SRG/2020/001290 for completion of this project.
KW was supported by the Australian Research Council
Centre of Excellence for Gravitational Wave Discovery
(OzGrav) through project number CE170100004.

[1] B. P. Abbott et al. (LIGO Scientific Collaboration
and Virgo Collaboration), Observation of Gravitational

Waves from a Binary Black Hole Merger, Phys. Rev. Lett.

16

FIG. 7. Sensitivity depth Dpdet
pfa as a function of (4D) computing cost CP for varying maximum mismatch µmax at fixed

segments (N,�T ), assuming Sco X-1 parameter space P2 of Table II. Sensitivity depth is estimated for a fixed (per-template)
false-alarm of pfa = 10�10 and di↵erent confidence levels of pdet = 90% (top), pdet = 95% (middle) and pdet = 99% (bottom).
Segment setup is N ⇥ �T = 180 ⇥ 1 d (left plot), and 120 ⇥ 3 d (right plot), corresponding to search setup-I and search
setup-II, respectively (cf. Table I). The dashed lines correspond to the sensitivity estimate assuming a theoretical A⇤

n lattice
mismatch-distribution, while the diamond markers correspond to using the measured BinaryWeave mismatch distributions.
Computing cost is measured in million core hours (Mh).
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Search setup Tobs �T N µmax D90%
pfa D95%

pfa D99%
pfa

[months] [days] [1/
p
Hz] [1/

p
Hz] [1/

p
Hz]

search setup-I 6 1 180 0.031 77 72 60
search setup-II 12 3 120 0.056 116 107 91
search setup-III 6 3 60 0.025 96 89 75
search setup-IV 12 1 360 0.025 93 86 73
search setup-V 6 10 18 0.025 120 111 94
search setup-VI 12 10 36 0.025 150 138 117

TABLE I. Definition of example search setups with corresponding estimated sensitivity depth, discussed in Sec. VA. The
sensitivity estimates assume a (per-template) false-alarm probability of pfa = 10�10 and detection confidences pdet =
90%, 95%, and 99%, respectively, using the measured (4D) mismatch distributions obtained for each setup (cf. Sec. IVB2).

Search space P f [Hz] ap [ls] Porb [s] tasc [GPS s] Reference(s)/comment(s)
P0 10–700 0.3–3.5 68023.7 ± 0.2 1124044455.0 ± 1000 BinaryWeave test range
P1 20–500 1.26–1.62 68023.70496 ± 0.0432 897753994 ± 100 Leaci and Prix [36]
P2 60–650 1.45–3.25 68023.86048 ± 0.0432 974416624 ± 50 Abbott et al. [28]
P3 40–180 1.45–3.25 68023.86 ± 0.12 1178556229 ± 417 Zhang et al. [29]
P4 600–700
P5 1000–1100
P6 1400–1500 1.45–3.25 68023.70496 ± 0.0432 974416624 ± 100 di↵erent ranges in frequency
P7 20–250 with broad range in ap

P8 20–1000
P9 20–1500
P10 600–700
P11 1000–1100
P12 1400–1500 1.40–1.50 68023.70496 ± 0.0432 974416624 ± 100 di↵erent ranges in frequency
P13 20–500 with narrow range in ap

P14 20–1000
P15 20–1500
P16 600–700
P17 1000–1100
P18 1400–1500 1.44–1.45 68023.70496 ± 0.0432 974416624 ± 100 di↵erent ranges in frequency
P19 20–500 with well-constrained ap

P20 20–1000
P21 20–1500

TABLE II. Di↵erent parameter space search regions considered for Sco X-1. P0 has been used in this study as a test range
for various Monte-Carlo tests of BinaryWeave. P1�3 represent observational constraints considered in recent CW searches
and studies. In addition, various combinations of parameter-ranges are considered, P4�21, in order to explore the impact of
improved observation constraints and reduced search ranges.

tors, this would correspond to 2.7EM. Similarly, for
search setup-II with 120⇥3 d segments and mismatch
of µmax = 0.056, we obtain a template count of N4D =
1.07 ⇥ 1015 and a corresponding total CPU runtime of
CP1 [search setup-II] ⇡ 1.56 ⇥ 1011 s = 43.2Mh, which
we can also express as 5.0EM.

Next we consider a number of additional parameter-
space scenarios, listed in Table. II. The constraints from
optical and radio emission observations come from dif-
ferent sources in the literature [18, 61], with the most
recent values given in [62, 76]. Future observations are
likely to further alter and improve these constraints. For
a fully-resolved period uncertainty, the total number of
templates (and therefore computing cost) scales as ap3max
for a wide parameter uncertainty in ap (cf. Eq. (27)),
but only as ap2max �ap for narrow parameter uncertainty

�ap.
In order to quantify the e↵ects of future improved

constraints on ap, we consider three di↵erent scenar-
ios: (i) ap 2 [1.45, 3.25] ls (search spaces P4 � P9), (ii)
ap 2 [1.40, 1.50] ls (search spaces P10 � P15) and (iii)
ap 2 [1.44, 1.45] ls (search spaces P16 � P21). Similarly
we consider six di↵erent frequency search ranges, three
“deep-search” ranges covering only 100Hz at di↵erent
frequencies (600 � 700Hz, 1000 � 1100Hz, and 1400 �

1500Hz), and three “broad-search” ranges within the
LIGO/Virgo frequency band (20 � 500Hz, 20 � 1000Hz
and 20 � 1500Hz). Finally, we consider both a 3D (for
an unresolved period uncertainty �Porb) and 4D search
for all cases considered.
The resulting computing cost estimates for all combi-

nations of the two setups (I and II), 3D or 4D template

Different parameter space search regions considered for Sco X-1. P0 has been used in this study as a test range for various Monte-
Carlo tests of BinaryWeave. P1−3 represent observational constraints considered in recent CW searches and studies. In addition, 
various combinations of parameter-ranges are considered, P4−21, in order to explore the impact of improved observation constraints 
and reduced search ranges. 

Table III

[MPW, PRD  107, 062005 (2023)]
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(I,3D) (I,4D) (II,3D) (II,4D)

P1 3.18 23.51 3.93 43.23
P2 28.50 466.48 35.22 857.69
P3 5.00 63.40 6.17 116.57
P4 26.38 577.57 32.60 1061.95
P5 68.76 2425.79 84.96 4460.17
P6 131.09 6381.48 161.97 11733.30
P7 3.24 20.42 4.01 37.54
P8 207.74 5226.87 256.69 9610.37
P9 701.14 26461.02 866.33 48652.49
P10 0.90 11.65 1.12 21.42
P11 2.36 48.94 2.91 89.97
P12 4.49 128.73 5.55 236.70
P13 0.11 0.41 0.14 0.76
P14 7.12 105.44 8.80 193.87
P15 24.03 533.80 29.70 981.46
P16 0.09 1.16 0.11 2.13
P17 0.23 4.86 0.29 8.93
P18 0.45 12.78 0.55 23.50
P19 0.01 0.04 0.01 0.08
P20 0.71 10.47 0.88 19.25
P21 2.40 52.99 2.96 97.43

TABLE III. Computing-cost estimates CP (in million core
hours [Mh]) for di↵erent parameter spaces Pn defined in Ta-
ble. II. We consider two setups, search setup-I and search
setup-II of Table I, assuming either a 3D or 4D template-
bank.

bank, and di↵erent parameter spaces P1�21 are given in
Table. III. We note that while some required computing
budgets may seem unrealistically large, a recent GPU
port of the F-statistic and Weave [56, 72] may yield
speedups factors of tens to hundreds, making many more
setups fall within reach of currently available computing
resources.

C. Sensitivity versus computing cost

In addition to considering various fixed search scenar-
ios as in the previous two subsections, it is also instructive
to study how the achievable sensitivity varies as a func-
tion of the invested computing cost. This would generally
involve a (3- or 4-dimensional) optimization problem over
all search-setup parameters (see [36, 40]) which is beyond
the scope of this study, so we consider a simpler problem
of varying the maximal template-bank mismatch µmax .
In a sense, this provides a lower limit on the achievable
sensitivity at any given cost, as one could always improve
sensitivity further by varying all three setup parameters
{µmax , N,�T} at fixed cost.

The search space is chosen as P2, and we use again
search setup-I (i.e., 180 ⇥ 1 d segments) and search

setup-II (i.e., 180 ⇥ 3 d) as baselines, but now we
vary the maximal template-bank mismatch in the range
0.025  µmax  2.5. For each mismatch, we can esti-
mate the number of templates N4D / µ�2

max via Eq. (27),

and obtain the corresponding computing cost C from
the simplified cost model Eq. (29). We use the cor-
responding theoretical mismatch distribution2 for the
A⇤

n-lattice, as well as the measured distribution from a
set of 100 injection-recovery simulations using Binary-

Weave, to estimate the expected sensitivity depth via
SensitivityDepthStackSlide() from OctApps.
This allows us to plot sensitivity depth versus comput-

ing cost, parametrized along µmax at fixed segment setup
N ⇥�T , which is shown in Fig. 7. As expected, sensitiv-
ity improves as the invested computational cost increases
and (equivalently) the maximum mismatch decreases; for
µmax . 0.1, however, further gains in sensitivity are min-
imal. We observe good agreement at small mismatches
(i.e., large computing costs) between the theoretical es-
timates (using expected lattice mismatch distributions)
and estimates using the measured mismatch distribu-
tions. The small loss of the measured versus expected
sensitivity in this regime from (well known) additional
intrinsic losses (⇠ O (1 � 3%)) of the high-performance
F-statistic implementation compared to the exact cal-
culation. At higher mismatches µmax , the measured
mismatches tend to be smaller than the metric predic-
tions, due to neglected higher-order terms in the met-
ric approximation, as discussed previously in Sec. II C
and Sec. IVB2. This explains the measured sensitiv-
ity decreasing more slowly compared to the theoretical
estimates at higher mismatches (i.e., smaller computing
cost).

VI. SUMMARY AND OUTLOOK

In this paper, we presented the implementation and
characterization of BinaryWeave, a new semi-coherent
search pipeline for CWs from neutron stars in binary sys-
tems with known sky-position. This pipeline is based on
theWeave framework [37], initially developed for all-sky
searches of isolated sources, using the well established
semi-coherent StackSlide F̂-statistic.

TheWeave framework requires a constant metric over
the search parameter space for lattice tiling, and in or-
der to apply the non-constant binary metric of Leaci and
Prix [36], we needed to develop a new internal coordi-
nate system in which a constant approximation to the
binary metric can be obtained. This is the basis for the
BinaryWeave implementation. We performed exten-
sive Monte-Carlo tests for the safety (in terms of mis-
matches) of the resulting template banks and their tem-
plate counts versus theoretical model expectations. Fur-
thermore, we obtained a simplified timing model for the
non-interpolating StackSlide mode used here, which al-
lows easy estimates for the required computing cost of

2 This will be a conservative over-estimate of the mismatch, see
Sec. IV B 2, and therefore an under-estimate of the sensitivity.

• Computing-cost estimates in million core hours [Mh] 
for different parameter spaces Pn (n = 1, 2, …, n) 
defined in Table. III. 

• We consider two setups, search setup-I and 
search setup-II of Table I, assuming either a 3D 
or 4D template-bank. 

Table IV
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FIG. 6. CPU run-time CP per search box as a function of the number of (semi-coherent) templates N̂4D for that box, for search
setup-I (left plot) and search setup-II (right plot), defined in Table. I. The points ’⇥’ (AM: should probably be ’+’) mark
the measured BinaryWeave run times, while the solid line indicates the e↵ective cost model prediction of Eq. (29), using an
e↵ective cost per template of Ct = 0.145ms.

Search setup Tobs �T N µmax D90%
pfa D95%

pfa D99%
pfa

[months] [days] [1/
p
Hz] [1/

p
Hz] [1/

p
Hz]

search setup-I 6 1 180 0.031 77 72 60
search setup-II 12 3 120 0.056 116 107 91

TABLE I. Example search setups with corresponding estimated sensitivity depth, assuming a (per-template) false-alarm prob-
ability of pfa = 10�10 and detection confidences pdet = 90%, 95%, and 99%, respectively. The sensitivity estimate uses the
measured (4D) mismatch distributions obtained for each setup.

B. Computing cost for di↵erent search scenarios

Here we present CPU computing cost in terms of
core hours, and million core hours (Mh), referring to
the mix of CPU hardware used in the present study,
cf. Sec. IVC2. Another interesting unit used in [36]
is Einstein@Home months (EM), which was defined as
12 000 (average) CPU cores running on Einstein@Home
[39] for 30 days. If one assumes the (current) average
Einstein@Home CPU to be roughly comparable to the
one used here, one can convert 1EM ⇡ 8.6Mh. A mea-
sure of computing cost used for clusters in the LIGO Sci-
entific Collaboration is the so-called service unit (SU),
which refers to one core-hour specifically on an Intel

Xeon E5-2670 processor. One can obtain a detailed SU
conversion factors for di↵erent CPUs, and for the hard-
ware mix used in this study we find a conversion factor
of 1.46 SU/h Arunava: check, maybe refs? .

Let us first consider the example of the Sco X-1 pa-

rameter space P1 considered in Leaci and Prix [36] (cf.
Table II) with two di↵erent search setups (I and II)
of Table. I. For search setup-I with 180 ⇥ 1 d seg-
ments and mismatch µmax = 0.031, the total num-
ber of (4D) templates given by Eq. (27) is N4D =
5.84 ⇥ 1014. Using the e↵ective computing-cost model
of Eq. (29) this results in a total CPU runtime of
CP1 [search setup-I] ⇡ 8.46 ⇥ 1010 s = 23.5Mh. Us-
ing the above conversion factors, this would correspond
to 2.7EM or 34.3MSU check . Similarly, for search

setup-II with 120 ⇥ 3 d segments and mismatch of
µmax = 0.056, we obtain a template count of N4D =
1.07 ⇥ 1015 and a corresponding total CPU runtime of
CP1 [search setup-II] ⇡ 1.56 ⇥ 1011 s = 43.2Mh, which
we can also express as 5.0EM or 63MSU.

Next we consider a number of additional parameter-
space scenarios, listed in Table. II. The constraints from
optical and radio emission observations come from dif-
ferent sources in the literature [18, 57], with the most
recent values given in [58, 73]. Future observations are

Table I

3D search:  freq, asini, Tasc

4D search: freq, asini, Porb, Tasc

[MPW, PRD  107, 062005 (2023)]
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• Communicate with EM-observations for better constraints on orbital parameters and 
spin-frequency of NS in Sco X-1: e.g. X-ray/Optical/IR/radio observers? 


• Thoroughly searching for X-ray pulsation from Sco X-1 (detection will be the game-
changer!) => challenging but worthwhile [Galaudage et al., MNRAS 509, 1745 (2022)]


• Convince the EM-observer to make an updated observation of Porb and Tasc near the 
middle of an observing run to maximise the benefits  


➡ It is worth exploring if long-term (~ 5-10 yrs) phase-evolution of Sco X-1 binary 
orbit can provide stricter constraints on Porb and Tasc 


• Perhaps communicating with larger community to regarding tighter constraints on asini 


➡  It will need deep observations in optical/IR/radio bands dedicated for this purpose; 
it will be critical for a breakthrough!


• Possibility of implementing GPU-based computation of F-statistic (e.g., CUDA, 
OpenCL?) [Wette et al., PRD 103, 083020] 


• Spin-wandering effect due to stochastic accretion rate [AM, Messenger & Riles, PRD 97, 
043016 (2018)] has been neglected in this study; worth incorporating Viterbi-like summing 
of segments for F-statistic [Melatos et al., PRD 104, 042003 (2021)]
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• Recently in a series of papers, Allen et. al. pointed out that an optimal covering 
lattice is NOT necessarily an optimal detection lattice


• The quantity that maximises detection probability is the optimal lattice quantiser 
[B. Allen, PRD (2021), B. Allen and E. Agrell, Ann. der Phys. (2021), B. Allen and 
A. Shoom, PRD (2021)] 


• The quantiser constant G is the second moment, i.e., average squared distance from 
the nearest templates [B. Allen, PRD (2021)] 


• However, it turned out that the advantage of optimal detection lattices (as pointed 
out by Allen+) offer only marginal improvements [B. Allen and A. Shoom, PRD 
(2021)] 

➡ A*n lattices seem to be near-optimal choice for n = 3 - 8 dim


