BinaryWeave: A New Semicoherent Pipeline for Detecting a CW Signal From Scorpius X-1

Implementing Semicoherent F-stat templates on optimal lattices

Arunava Mukherjee¹

in collaboration with Reinhard Prix^{2,3} and Karl Wette^{4,5}

¹Saha Institute of Nuclear Physics (SINP), Kolkata
 ²Max-Planck-Institut fu"r Gravitationsphysik, Callinstr. 38, D-30167 Hannover, Germany
 ³Leibniz Universita"t Hannover, Callinstr. 38, D-30167 Hannover, Germany
 ⁴Centre for Gravitational Astrophysics, Australian National University, Canberra ACT 2601, Australia
 ⁵ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn VIC 3122, Australia

Continuous Gravitational Waves and Neutron Stars Workshop, Hannover, 20 June 2024

Sources of CW-Signals: a Quick Reminder

- (Rapidly) spinning neutron stars with mass-quadrupolar deformations => equatorial ellipticity (ε)
- Various non-radial oscillation modes, e.g., r-mode, g-mode, f-mode, in old and newly born neutron stars
- Ideal test beds:
 - spinning neutron stars in "messy environments", e.g., NS in accreting binaries, LMXB systems
 - newly born neutron star that has yet to settle down to its long-term structures, e.g., supernova remnants
 - Unknown sources of special interests, e.g., galactic centre, globular clusters, etc.

Here I will specifically focus on Sco X-1, a known accreting NS in LMXB system

Scorpius X-1: the Brightest Extra-Solar X-Ray Source in the Sky

3

- Scorpius X-1 (Sco X-1) is the brightest extra-solar X-ray sources in the sky
- A low-mass X-ray binary (LMXB) system with a companion with mass $\sim 0.42 \text{ M}_{sun}$
- X-ray and optical spectra from Sco X-1 suggests it harbours a neutron star as the primary object
- High X-ray luminosity => proxy for high mass-accretion rate => plausible large non-axisymmetric deformation
- Torque balance scenario: accretion induced spin-up torque = spin-down torque combined by all the dissipative mechanisms
- Certain astrophysical properties and spin-distributions of neutron stars advocates for strong CW emission as one of the most natural braking mechanisms

Sco X-1 Source Properties

- Although the brightest and persistent X-ray emitter, <u>NO pulsation</u> is seen from Sco X-1 [Galaudage et al., MNRAS 509, 1745 (2022)]
- Optical and radio observations have measured different orbital parameters to a varied degrees of accuracies
- Eccentricity is well constrained: $e \le 0.0132$

Scorpius X-1: system parameters.

TABLE I.

Galloway et al., ApJ 781:14 (2014); Cherepashchuk et al., MNRAS 508, 1389 (2021); Killestein et. al., MNRAS 520, 5317 (2023)

Sco X-1 parameter	Value	Uncertainty
Period	68023.70 sec	0.04 sec
Orbital semimajor axis	1.44 sec	0.18 sec
Time of ascension	897753994	100 sec
Orbital eccentricity	< 0.068	3σ
Right Ascension	16 ^h 19 ^m 55 ^s .067	0″.06
Declination	-15°38′25″.02	0″.06
System inclination	44°	6°
Companion mass	$0.42 M_{Sol}$	
X-ray flux	$3.9 \times 10^{-10} \text{ Wm}^{-2}$	

Ref: Messenger et al., PRD 92, 023006 (2015)

> Note: these observations are <u>old now</u>, and a new set of refined source parameter space has been reported in T. L. Killestein et. al., MNRAS 520, 5317–5330 (2023)

Searching for a CW-Signal From Sco X-1

- Problem at hand: detecting a CW-signal from Sco X-1
- The source emits quasi-monochromatic continuous gravitational waves in its rest frame
 - → However, its spin-frequency is completely unknown
- Being in a stellar binary system, the CW-signal goes through significant doppler modulations
 - → We need to search over the orbital parameters of the binary system

Sco X-1 Search Results

- Sco X-1 has been searched extensively in GW detectors, including Advanced-LIGO, Advanced-VIRGO, KAGRA over a couple of decades
- However, only recently we have been able to beat the torque-balance limit in the low-frequency regime (< 200 Hz)
 - B. Abbott et al., PRD 76, 082001 (2007); J. Aasi et al., PRD 91, 062008 (2015); B. P. Abbott et al., PRD 100, 122002 (2019); Y. Zhang et al., ApJL 906:L14 (2021); R. Abbott et al., ApJL 941:L30 (2022)
- Recent searches with updated source parameters of *Killestein et. al. (2023)* Whelan et al., ApJ, Vol. 949, Issue 2, id.117 (2023); Vargas & Melatos, arXiv:2310.19183

Ref: Y. Zhang et al., ApJL 906:L14 (2021)

Ref: R. Abbott et al., ApJL 941:L30 (2022)

Spin Frequency of Accreting NSs

- Accreting neutron stars (in LMXBs) are generally fast spinning objects; frequency in [200, 700 Hz]
 D. Chakrabarty, AIPC Proc., Vol. 1068, pp. 67-74 (2008); A. Patruno, et al., ApJ 850:106 (2017)
- Accretion transfer (+ve) angular momentum to the NSs, acts as the primary mechanism for spin-up
- Sco X-1 is one of the highest accreting NS LMXB systems; it likely to host a rapidly spinning neutron star, possibly in the range of ~ 300 700 Hz

all known AMXPs and NXPs.

Ref: A. Patruno, et al., ApJ 850:106 (2017)

neutron stars (AMXPs + NXPs).

Searching for a CW-Signal From Sco X-1 [Revisited ...]

8

- Problem at hand: detecting a CW-signal from Sco X-1
- The source emits quasi-monochromatic continuous gravitational waves in its rest frame
 - → However, its spin-frequency is completely unknown
- Being in a stellar binary system, the CW-signal goes through significant doppler modulations
 - → We need to search over the orbital parameters of the binary system

The target parameter space becomes enormous due to limited observational constraints!

A New Search Pipeline for Sco X-1: BINARYWEAVE

9

Overview: BinaryWeave

- This is a **semi-coherent** CW search pipeline for signals from a spinning neutron star in **binary system with known sky-position**
- The primary target is Sco X-1 over a wide range of frequency band and orbital parameter space
- However, it can be used for directed searches from other binary systems with known sky-position (including other LMXBs)
- This pipeline is developed following the method in Leaci & Prix, PRD 91, 102003 (2015)
- The pipeline has been implemented in the "WEAVE-infrastructure" initially developed by K. Wette and R. Prix [K. Wette et al., PRD 97, 123016 (2018)] (see: [K. Wette at LVC-meeting, Glasgow (2016); DCC: <<u>LIGO-G1601794-v2</u>])

Basic Structure

- The entire observation time is **split** into N number of **segments**
- Each segments is searched with match-filtering the data against a bank of templates of phase/doppler-parameters (denoted by, λ)
- Results in well-known coherent *F*-statistic for each of the N segments by maximising over the four amplitude-parameters (denoted by, *A*)
 JKS, PRD 58, 063001 (1998); R. Prix, PRD 75, 023004 (2007)
- Sum over the *F*-statistic values from those N-segments incoherently to get the final semi-coherent *F*-statistic distribution
- Search over the source parameter space (P): orbital-parameters (ASINI, PORB, TASC) along with FREQ (CW-frequency), etc., ...

Weave Modus Operandi

- Tile (near) optimal covering lattice A*n or usual Z*n lattice grids in D-dim search parameter space (P) for each coherent-segment [R. Prix, PRD 75, 023004 (2007), R. Prix, LVC CW F2F (Ref: 8)]
- Perform coherent *F*-statistic searches at each of the lattice points in *P*
- Sum over the *F*-statistic values from those N-segments incoherently to get the final semi-coherent *F*-statistic distribution
 - While summing one can opt for either nearest-neighbor interpolation for each of the coherent segments [K. Wette, PRD 90, 122010 (2014)]
 - <u>OR</u> exactly at the same lattice points in parameter space (non-interpolating) Developer: K. Wette, R. Prix

BINARYWEAVE presently incorporates only the non-interpolating searches.

Optimal Covering Lattice

- One of the primary goals is to put templates on A*n lattice-grid
- A^{*}_n is optimal/near-optimal covering lattice for D = 2, ..., 16 dimensions [ref: 4]

Compared to Z_n^* , the efficiency of coverage for A_n^* is:

Dimension	3	4	5	6	7
Efficiency	1.9	2.8	4.3	6.8	10.9

• This results in saving computational cost to search a signal over wide parameter space

Constant Metric Requirement for A*n Lattice Tiling

In the long segment limit (T_{obs} >> P_{orb}) the coherent metric is defined as :

where, $\Delta_{ma} = t_{mid} - t_{asc}$ and $\Delta T =$ segment length

[Leaci & Prix, PRD 91, 102003 (2015)]

$$\tilde{g}_{\Omega t_{asc}}^{\mathrm{LS}} = \tilde{g}_{t_{asc}\Omega}^{\mathrm{LS}} = 2\pi^2 f^2 a_p^2 \Omega \Delta_{ma}$$

 $\tilde{g}_{\Omega\Omega}^{\mathrm{LS}} = 2\pi^2 f^2 a_p^2 \left(\frac{\Delta T^2}{12} + \Delta_{ma}^2\right)$

 $\tilde{g}_{t_{asc}t_{asc}}^{\rm LS} = 2\pi^2 f^2 (a_p \Omega)^2$

 $\tilde{g}_{ff}^{\rm LS} = \pi^2 \frac{\Delta T^2}{3}$

 $\tilde{g}_{a_p a_p}^{\rm LS} = 2\pi^2 f^2$

 $\tilde{g}_{\kappa\kappa}^{\mathrm{LS}} = \frac{\pi^2}{2} f^2 a_p^2$

 $\tilde{g}_{\eta\eta}^{\mathrm{LS}} = \frac{\pi^2}{2} f^2 a_p^2$

Implement a New Coordinate System for Lattice Tiling

• Old (i.e., observer/user) set of coordinates are

$$\boldsymbol{\lambda} := \{a_p, \Omega, t_{asc}, \kappa, \eta\}$$

• We get a new set of coordinates for lattice/internal param-space

$$\lambda_{int} := \{a_p, v_p, d_{asc}, \kappa_p, \eta_p\}$$

$$a_{p} = a_{p}$$

$$v_{p} = a_{p} \times \Omega = 2\pi (a_{p}/P_{orb})$$

$$d_{asc} = a_{p} \times \Omega \times t_{asc} = v_{p} \times t_{asc}$$

$$\kappa_{p} = a_{p} \times \kappa$$

$$\eta_{p} = a_{p} \times \eta$$

The coordinate transformation functions

[AM, Prix & Wette, PRD 107, 062005 (2023)]

The Metric in the New Lattice Coordinate

Corresponding non-zero terms in the new form of metric are

$$\begin{split} \tilde{g}_{ff}^{\mathrm{LS}} &= \pi^2 \frac{\Delta T^2}{3} \\ \tilde{g}_{a_p a_p}^{\mathrm{LS}} &= 2\pi^2 f^2 \\ \tilde{g}_{v_p v_p}^{\mathrm{LS}} &= 2\pi^2 f^2 (\frac{\Delta T^2}{12} + \Delta_{ma}^2) \\ \tilde{g}_{d_{asc} d_{asc}}^{\mathrm{LS}} &= 2\pi^2 f^2 \\ \tilde{g}_{k\kappa}^{\mathrm{LS}} &= \frac{\pi^2}{2} f^2 \\ \tilde{g}_{\eta\eta}^{\mathrm{LS}} &= \frac{\pi^2}{2} f^2 \\ \tilde{g}_{v_p d_{asc}}^{\mathrm{LS}} &= \tilde{g}_{d_{asc} v_p}^{\mathrm{LS}} = 2\pi^2 f^2 \Delta_{ma} \end{split}$$

- Each of the metric coefficient is nearlyconstant now.
- Internally we use $\lambda_{int} := \{a_p, v_p, d_{asc}, \kappa_p, \eta_p\}$

coordinates to perform lattice-tiling

- For the remaining parameters (f and Δ_{ma}) we put templates in a conservative way
- We set $f = f_{max}$ and $\Delta_{ma} = max(\Delta_{ma})$ over the search range
- Good approximation when, $\Delta f \ll f$ and $\Delta Tasc \ll \Delta_{ma}$

[AM, Prix & Wette, PRD 107, 062005 (2023)]

Injection-Recovery: 1-D Template Banks

Injection-Recovery: 2-D Template Banks

[AM, Prix & Wette, PRD 107, 062005 (2023)]

Mismatch Distribution: Semi-Coherent Case

Mismatch (μ) is defined as:

$$\mu = \frac{\rho^2(\mathcal{A}, \lambda_s; \lambda_s) - \rho^2(\mathcal{A}, \lambda_s; \lambda)}{\rho^2(\mathcal{A}, \lambda_s; \lambda_s)}$$

 $T_{obs} = 30$ days, $T_{seg} = 1$ day 1000 randomly drawn samples for injection-recovery test ever large parameter space: \mathcal{P}_0

\mathcal{P}_0

Freq: 10 - 700 Hz Asini: 0.3 - 3.5 lt-sec Porb: 68023.7 ± 0.2 sec Tasc: 1124044455 ± 1000 sec

Semi-coherent mismatch distribution for the 4D template bank searching {FREQ, ASINI, PORB, TASC} for an injected signal

Results From Two Realistic Search Setups

 Example of BINARYWEAVE pipeline characteristics and timing model for two search setups:

Table I

Search setup	$T_{ m obs}$	ΔT	N	$\mu_{ m max}$
	[months]	[days]		
search setup-I	6	1	180	0.031
search setup-II	12	3	120	0.056

Mismatch Distribution: Small Mismatch Test

Two sets of 500 randomly drawn injection-recovery samples for small mismatch maximum mismatch (µmax) = 0.05:

Semicoherent mismatch distribution for the 4D template bank searching {FREQ, ASINI, PERIOD, TASC} for an injected signal

Number of Templates

Number of templates (= \mathcal{N}) can be calculated as:

$$\mathcal{N} = \theta_n \mu_{\max}^{-n/2} \int_{\mathcal{P}} \sqrt{\det g(\lambda)} d^n \lambda,$$

where,

$$\theta_n = \begin{cases} 2^{-n} n^{n/2} & \text{for } \mathbb{Z}_n, \\ \sqrt{n+1} \left[\frac{n(n+2)}{12(n+1)} \right]^{n/2} & \text{for } A_n^*. \end{cases}$$

n: number of dimension

 μ_{max} : maximum mismatch

Total number of templates for the 4D search of {FREQ, ASINI, PERIOD, TASC} is:

$$\hat{\mathcal{N}}_{4\mathrm{D}} = \frac{\theta_4}{\mu_{\mathrm{max}}^2} \frac{\pi^4 \gamma \Delta T^2}{36\sqrt{2}} (f_{\mathrm{max}}^4 - f_{\mathrm{min}}^4) (a_{\mathrm{p,max}}^3 - a_{\mathrm{p,min}}^3) \times (\Omega_{\mathrm{max}}^2 - \Omega_{\mathrm{min}}^2) (t_{\mathrm{asc,max}} - t_{\mathrm{asc,min}}),$$

with,

$$\gamma = \sqrt{1 + 12 \frac{(\overline{\Delta}_{\rm ma}^2 - \overline{\Delta}_{\rm ma}^2)}{\Delta T^2}}$$

[Leaci & Prix, PRD 91, 102003 (2015)]

BinaryWeave: Template Bank Size

Number of semicoherent templates N_{4D} constructed by BinaryWeave versus with the theoretical predictions. Each point '+' corresponds to a simulated 4D-box search around a randomly chosen parameter-space location.

BinaryWeave: Timing Model

CPU run-time C_P per search box as a function of the number of (semi-coherent) templates N_{4D} for that box, for **SEARCH SETUP-I** (left plot) and **SEARCH SETUP-II** (right plot), defined in Table. II. The points '+' mark the measured **BINARYWEAVE** run times, while the solid line indicates the effective cost model prediction, using an effective cost per template of $C_t = 0.145$ ms.

Sensitivity Depths

• Sensitivity Depths (with per-template false-alarm probability ' p_{fa} ' and detection probability ' p_{det} ') is defined as:

$$\mathcal{D}_{p_{\mathrm{fa}}}^{p_{\mathrm{det}}} \equiv rac{\sqrt{S_{\mathrm{n}}}}{h_{p_{\mathrm{fa}}}^{p_{\mathrm{det}}}}$$

• Sensitivity Depths for 6 different search setups at ' p_{fa} ' = 10⁻¹⁰ are:

Search setup	$T_{\rm obs}$	ΔT	N	μ_{\max}	$\mathcal{D}_{p_{\mathrm{fa}}}^{90\%}$	$\mathcal{D}_{p_{\mathrm{fa}}}^{95\%}$	$\mathcal{D}_{p_{\mathrm{fa}}}^{99\%}$
	[months]	[days]			$[1/\sqrt{Hz}]$	$[1/\sqrt{Hz}]$	$[1/\sqrt{Hz}]$
search setup-I	6	1	180	0.031	77	72	60
search setup-II	12	3	120	0.056	116	107	91
search setup-III	6	3	60	0.025	96	89	75
search setup-IV	12	1	360	0.025	93	86	73
search setup-V	6	10	18	0.025	120	111	94
search setup-VI	12	10	36	0.025	150	138	117

Table II

Sensitivity Depths at Different Computational Costs

Fig: Lower-limit of search sensitivity as a function of computational cost is shown here. The left panel corresponds to **SEARCH SETUP-I** ($T_{obs} = 180$ days, $T_{seg} = 1$ day) and the right-panel corresponds to **SEARCH SETUP-II** ($T_{obs} = 360$ days, $T_{seg} = 3$ days). [MPW, PRD 107, 062005 (2023)]

What BINARYWEAVE Can Say About High Frequency/Larger Parameter Space Search?

Observational Scenarios: Different Parameter Spaces

Table III

Search space \mathcal{P} $t_{\rm asc} \, [{\rm GPS\,s}]$ Reference(s)/comment(s)f [Hz] $a_{\rm p} \left[{\rm ls} \right]$ $P_{\rm orb} \left[s \right]$ 0.3 - 3.510-700 68023.7 ± 0.2 1124044455.0 ± 1000 BINARYWEAVE test range $\overline{\mathcal{P}_0}$ $\overline{\mathcal{P}_1}$ $1.26 - 1.62 | 68023.70496 \pm 0.0432$ Leaci and Prix [36] 20 - 500 897753994 ± 100 Abbott et al. [28] \mathcal{P}_2 60 - 650 $1.45 - 3.25 | 68023.86048 \pm 0.0432$ 974416624 ± 50 1.45 - 3.25 \mathcal{P}_3 40 - 180 68023.86 ± 0.12 1178556229 ± 417 Zhang et al. [29] $\overline{\mathcal{P}_4}$ 600 - 700 \mathcal{P}_5 1000 - 1100 \mathcal{P}_6 different ranges in frequency 1400-1500 974416624 ± 100 $|1.45 - 3.25|68023.70496 \pm 0.0432|$ \mathcal{P}_7 with broad range in $a_{\rm p}$ 20 - 250 \mathcal{P}_8 20 - 100020 - 1500 \mathcal{P}_9 \mathcal{P}_{10} 600 - 700 \mathcal{P}_{11} 1000 - 1100 $1400 - 1500 | 1.40 - 1.50 | 68023.70496 \pm 0.0432$ \mathcal{P}_{12} 974416624 ± 100 different ranges in frequency with narrow range in $a_{\rm p}$ \mathcal{P}_{13} 20 - 50020 - 1000 \mathcal{P}_{14} 20 - 1500 \mathcal{P}_{15} \mathcal{P}_{16} 600 - 700 \mathcal{P}_{17} 1000 - 1100different ranges in frequency \mathcal{P}_{18} $1400 - 1500 | 1.44 - 1.45 | 68023.70496 \pm 0.0432$ 974416624 ± 100 \mathcal{P}_{19} 20 - 500with well-constrained $a_{\rm p}$ \mathcal{P}_{20} 20 - 1000 \mathcal{P}_{21} 20 - 1500

Different parameter space search regions considered for Sco X-1. \mathcal{P}_0 has been used in this study as a test range for various Monte-Carlo tests of **BINARYWEAVE**. \mathcal{P}_{1-3} represent observational constraints considered in recent CW searches and studies. In addition, various combinations of parameter-ranges are considered, \mathcal{P}_{4-21} , in order to explore the impact of improved observation constraints and reduced search ranges.

[MPW, PRD 107, 062005 (2023)]

28

Computational Costs for Different Parameter Space

	(I,3D)	(I,4D)	(II,3D)	(II,4D)
\mathcal{P}_1	3.18	23.51	3.93	43.23
\mathcal{P}_2	28.50	466.48	35.22	857.69
\mathcal{P}_3	5.00	63.40	6.17	116.57
\mathcal{P}_4	26.38	577.57	32.60	1061.95
\mathcal{P}_5	68.76	2425.79	84.96	4460.17
\mathcal{P}_6	131.09	6381.48	161.97	11733.30
\mathcal{P}_7	3.24	20.42	4.01	37.54
\mathcal{P}_8	207.74	5226.87	256.69	9610.37
\mathcal{P}_9	701.14	26461.02	866.33	48652.49
\mathcal{P}_{10}	0.90	11.65	1.12	21.42
\mathcal{P}_{11}	2.36	48.94	2.91	89.97
\mathcal{P}_{12}	4.49	128.73	5.55	236.70
\mathcal{P}_{13}	0.11	0.41	0.14	0.76
\mathcal{P}_{14}	7.12	105.44	8.80	193.87
\mathcal{P}_{15}	24.03	533.80	29.70	981.46
\mathcal{P}_{16}	0.09	1.16	0.11	2.13
\mathcal{P}_{17}	0.23	4.86	0.29	8.93
\mathcal{P}_{18}	0.45	12.78	0.55	23.50
\mathcal{P}_{19}	0.01	0.04	0.01	0.08
\mathcal{P}_{20}	0.71	10.47	0.88	19.25
\mathcal{P}_{21}	2.40	52.99	2.96	97.43

- Computing-cost estimates in million core hours [Mh] for different parameter spaces \$\mathcal{P}_n\$ (n = 1, 2, ..., n) defined in Table. III.
- We consider two setups, SEARCH SETUP-I and SEARCH SETUP-II of Table I, assuming either a 3D or 4D template-bank.

3D search: FREQ, ASINI, TASC 4D search: FREQ, ASINI, PORB, TASC

<u>Table I</u>

Search setup	$T_{\rm obs}$ ΔT		N	$\mu_{ m max}$
	[months]	[days]		
search setup-I	6	1	180	0.031
search setup-II	12	3	120	0.056

Prospective Future Direction

- Communicate with **EM-observations for better constraints** on orbital parameters and spin-frequency of NS in Sco X-1: e.g. X-ray/Optical/IR/radio observers?
- Thoroughly searching for X-ray pulsation from Sco X-1 (*detection will be the game-changer!*) => challenging but worthwhile [Galaudage et al., MNRAS 509, 1745 (2022)]
- Convince the EM-observer to make an updated observation of P_{ORB} and T_{ASC} near the middle of an observing run to maximise the benefits
 - It is worth exploring if long-term (~ 5-10 yrs) phase-evolution of Sco X-1 binary orbit can provide stricter constraints on PORB and TASC
- Perhaps communicating with larger community to regarding tighter constraints on ASINI
 - It will need deep observations in optical/IR/radio bands dedicated for this purpose; it will be critical for a breakthrough!
- Possibility of implementing GPU-based computation of *F*-statistic (e.g., CUDA, OPENCL?) [Wette et al., PRD 103, 083020]
- Spin-wandering effect due to stochastic accretion rate [AM, Messenger & Riles, PRD 97, 043016 (2018)] has been neglected in this study; worth incorporating Viterbi-like summing of segments for *F*-statistic [Melatos et al., PRD 104, 042003 (2021)]

References Important for BINARYWEAVE

- 1. P. Leaci & R. Prix, Phys. Rev. D 91, 102003 (2015)
- CW F2F presentation by K. Wette at LVC-meeting, Glasgow (2016); DCC: <<u>LIGO-G1601794-v2</u>>
- 3. K. Wette, Phys. Rev. D 90, 122010 (2014)
- 4. K. Wette, S. Walsh, R. Prix, M. A. Papa, Phys. Rev. D 97, 123016 (2018)
- 5. P. Jaranowski, A. Krolak, and B. F. Schutz, Phys. Rev. D 58, 063001 (1998) [JKS]
- 6. R. Prix, Phys. Rev. D 75, 023004 (2007)
- 7. R. Prix, Classical Quantum Gravity 24, S481 (2007)
- CW F2F presentation by R. Prix at LVC-meeting, Budapest (2015); DCC: <<u>LIGO-G1501145-v2</u>>
- 9. K. Wette, Phys. Rev. D 90, 122010 (2014)
- 10. A. Mukherjee, R. Prix, and K. Wette, Phys. Rev. D 107, 062005 (2023) [MPW]

THANK YOU!

Backup Slides

Optimal Covering Lattice OR Optimal Detection Lattice?

- Recently in a series of papers, Allen et. al. pointed out that <u>an optimal covering</u> <u>lattice is NOT necessarily an optimal detection lattice</u>
- The quantity that maximises detection probability is the optimal lattice quantiser [B. Allen, PRD (2021), B. Allen and E. Agrell, Ann. der Phys. (2021), B. Allen and A. Shoom, PRD (2021)]
- The quantiser constant *G* is the second moment, i.e., average squared distance from the nearest templates [B. Allen, PRD (2021)]
- However, it turned out that the advantage of optimal detection lattices (as pointed out by Allen+) offer <u>only marginal improvements</u> [B. Allen and A. Shoom, PRD (2021)]

→ A_n^* lattices seem to be near-optimal choice for n = 3 - 8 dim