BinaryWeave: A New Semicoherent Pipeline for Detecting a CW Signal From Scorpius X-1

Implementing Semicoherent F-stat templates on optimal lattices

Arunava Mukherjee¹

in collaboration with **Reinhard Prix**2,3 and **Karl Wette**4,5

1Saha Institute of Nuclear Physics (SINP), Kolkata ²Max-Planck-Institut fu r Gravitationsphysik, Callinstr. 38, D-30167 Hannover, Germany ³Leibniz Universita t Hannover, Callinstr. 38, D-30167 Hannover, Germany 4Centre for Gravitational Astrophysics, Australian National University, Canberra ACT 2601, Australia 5ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn VIC 3122, Australia

Continuous Gravitational Waves and Neutron Stars Workshop, Hannover, 20 June 2024

Sources of CW-Signals: a Quick Reminder

- α (Rapidly) spinning neutron stars with mass-quadrupolar deformations \Rightarrow equatorial ellipticity (ε)
- Various non-radial oscillation modes, e.g., r-mode, g-mode, f-mode, in old and newly born neutron stars
- Ideal test beds:
	- **►** spinning neutron stars in "messy environments", e.g., NS in accreting binaries, LMXB systems
	- **■** newly born neutron star that has yet to settle down to its long-term structures, e.g., supernova remnants
	- ➡ Unknown sources of special interests, e.g., galactic centre, globular clusters, etc.

Here I will specifically focus on Sco X-1, a known accreting NS in LMXB system

Scorpius X-1: the Brightest Extra-Solar X-Ray Source in the Sky

3

- Scorpius $X-1$ (Sco $X-1$) is the brightest extra-solar X-ray sources in the sky
- A low-mass X-ray binary (LMXB) system with a companion with mass ~ 0.42 M_{sun}
- X-ray and optical spectra from Sco X-1 suggests it harbours a neutron star as the primary object
- High X-ray luminosity \Rightarrow proxy for high mass-accretion rate \Rightarrow plausible large non-axisymmetric deformation
- Torque balance scenario: accretion induced spin-up torque = spin-down torque combined by all the dissipative mechanisms
- Certain astrophysical properties and spin-distributions of neutron stars advocates for strong CW emission as one of the most natural braking mechanisms

Sco X-1 Source Properties

- Although the brightest and persistent X-ray emitter, NO pulsation is seen from Sco X-1 [Galaudage et al., MNRAS **509,** 1745 (2022)]
- Optical and radio observations have measured different orbital parameters to a varied degrees of accuracies
- Eccentricity is well constrained: *e* ≤ 0.0132

Galloway et al., ApJ 781:14 (2014); Cherepashchuk et al., MNRAS 508, 1389 (2021); Killestein et. al., MNRAS 520, 5317 (2023)

Scorpius X-1: system parameters. **TABLE I.**

> Ref: Messenger et al., PRD 92, 023006 (2015)

> > **Note**: these observations are *old now*, and a new set of refined source parameter space has been reported in T. L. Killestein et. al., MNRAS 520, 5317–5330 (2023)

Searching for a CW-Signal From Sco X-1

- **• Problem at hand: detecting a CW-signal from Sco X-1**
- The source emits quasi-monochromatic continuous gravitational waves in its rest frame
	- **→ However, its spin-frequency is completely unknown**
- Being in a stellar binary system, the CW-signal goes through significant doppler modulations
	- \rightarrow We need to search over the orbital parameters of the binary system

Sco X-1 Search Results

- Sco X-1 has been searched extensively in GW detectors, including Advanced-LIGO, Advanced-VIRGO, KAGRA over a couple of decades
- However, only recently we have been able to beat the torque-balance limit in the lowfrequency regime $(< 200$ Hz)
	- B. Abbott et al., PRD 76, 082001 (2007); J. Aasi et al., PRD 91, 062008 (2015); B. P. Abbott et al., PRD 100, 122002 (2019); Y. Zhang et al., ApJL 906:L14 (2021); R. Abbott et al., ApJL 941:L30 (2022)
- Recent searches with updated source parameters of *Killestein et. al. (2023)* Whelan et al., ApJ, Vol. 949, Issue 2, id.117 (2023); Vargas & Melatos, arXiv:2310.19183

Ref: Y. Zhang et al., ApJL 906:L14 (2021) Ref: R. Abbott et al., ApJL 941:L30 (2022)

Spin Frequency of Accreting NSs

- Accreting neutron stars (in LMXBs) are generally fast spinning objects; frequency in [200, 700 Hz] D. Chakrabarty, AIPC Proc., Vol. 1068, pp. 67-74 (2008); A. Patruno, et al., ApJ 850:106 (2017)
- Accretion transfer (+ve) angular momentum to the NSs, acts as the primary mechanism for spin-up
- Sco X-1 is one of the highest accreting NS LMXB systems; it likely to host a rapidly spinning neutron star, possibly in the range of \sim 300 — 700 Hz

all known AMXPs and NXPs.

Ref: A. Patruno, et al., ApJ 850:106 (2017)

neutron stars (AMXPs + NXPs).

7

Searching for a CW-Signal From Sco X-1 [Revisited …]

8

- **• Problem at hand: detecting a CW-signal from Sco X-1**
- The source emits quasi-monochromatic continuous gravitational waves in its rest frame

→ However, its spin-frequency is completely unknown

- Being in a stellar binary system, the CW-signal goes through significant doppler modulations
	- \rightarrow We need to search over the orbital parameters of the binary system

The target parameter space becomes enormous due to limited observational constraints!

A New Search Pipeline for Sco X-1: **BINARYWEAVE**

9

Overview: BinaryWeave

- This is a **semi-coherent** CW search pipeline for signals from a spinning neutron star in **binary system with known sky-position**
- The primary target is **Sco X-1** over a wide range of frequency band and orbital parameter space
- However, it can be used for directed searches from other binary systems with known sky-position (including **other LMXBs**)
- This pipeline is developed following the method in Leaci & Prix, PRD 91, 102003 (2015)
- The pipeline has been implemented in the "WEAVE-infrastructure" initially developed by K. Wette and R. Prix [K. Wette et al., PRD 97, 123016 (2018)] (see: [K. Wette at LVC-meeting, Glasgow (2016) ; DCC: < $\underline{LIGO-G1601794-v2}$])

Basic Structure

- The entire observation time is **split** into **N** number of **segments**
- Each segments is searched with match-filtering the data against a bank of templates of phase/doppler-parameters (denoted by, λ)
- Results in well-known coherent *F*-statistic for each of the N segments by maximising over the four amplitude-parameters (denoted by, \mathcal{A}) JKS, PRD 58, 063001 (1998); R. Prix, PRD 75, 023004 (2007)
- **Sum** over the *F***-statistic** values from those **N-segments incoherently** to get the final **semi-coherent** *F***-statistic** distribution
- Search over the source parameter space (P) : orbital-parameters (ASINI, PORB, TASC) along with FREQ (CW-frequency), etc., ...

Weave Modus Operandi

- Tile (near) optimal covering lattice A^* _n or usual Z^* _n lattice grids in D-dim search parameter space (*P*) for each coherent-segment [R. Prix, PRD 75, 023004 (2007), R. Prix, LVC CW F2F (Ref: 8)]
- Perform coherent *F***-statistic** searches at each of the lattice points in *^P*
- Sum over the *F***-statistic** values from those N-segments incoherently to get the final semi-coherent *F***-statistic** distribution
	- While summing one can opt for either nearest-neighbor interpolation for each of the coherent segments [K. Wette, PRD 90, 122010 (2014)]
	- OR exactly at the same lattice points in parameter space (non-interpolating) Developer: K. Wette, R. Prix

BinaryWeave presently incorporates only the non-interpolating searches.

Optimal Covering Lattice

- One of the primary goals is to put templates on A^* _n lattice-grid
- A_{n}^{*} is optimal/near-optimal covering lattice for $D = 2, ..., 16$ dimensions [ref: 4]

Compared to Z_{n}^{*} , the efficiency of coverage for A_{n}^{*} is:

Dimension	3	4	15	6	
Efficiency	1.9	2.8	4.3	6.8	10.9

• This results in saving computational cost to search a signal over wide parameter space

Constant Metric Requirement for A^{*}_n Lattice Tiling

In the long segment limit ($T_{obs} >> P_{orb}$) the coherent metric is defined as :

where, $\Delta_{\text{ma}} = \text{t}_{\text{mid}} - \text{t}_{\text{asc}}$ and ΔT = segment length

[Leaci & Prix, PRD 91, 102003 (2015)]

$$
\tilde{g}^{\text{LS}}_{\Omega t_{asc}}=\tilde{g}^{\text{LS}}_{t_{asc}\Omega}=2\pi^2f^2a_p^2\Omega\Delta_{ma}
$$

 $\tilde{g}_{\Omega\Omega}^{\text{LS}} = 2\pi^2 f^2 a_p^2 \left(\frac{\Delta T^2}{12} + \Delta_{ma}^2 \right)$

 $\tilde{g}^{\text{LS}}_{t_{asc}t_{asc}} = 2\pi^2 f^2 (a_p \Omega)^2$

 $\tilde{g}^\text{LS}_{ff} = \pi^2 \frac{\Delta T^2}{3}$

 $\tilde{g}^{\rm LS}_{a_p a_p} = 2\pi^2 f^2$

 $\tilde{g}^{\rm LS}_{\kappa\kappa}=\frac{\pi^2}{2}f^2a_p^2$

 $\tilde{g}^{\rm LS}_{\eta\eta}=\frac{\pi^2}{2}f^2a_p^2$

Implement a New Coordinate System for Lattice Tiling

• Old (i.e., observer/user) set of coordinates are

$$
\lambda:=\{a_p,\Omega,t_{asc},\kappa,\eta\}
$$

• We get a new set of coordinates for lattice/internal param-space

$$
\lambda_{int} := \{a_p, v_p, d_{asc}, \kappa_p, \eta_p\}
$$

$$
a_p = a_p
$$

\n
$$
v_p = a_p \times \Omega = 2\pi (a_p/P_{orb})
$$

\n
$$
d_{asc} = a_p \times \Omega \times t_{asc} = v_p \times t_{asc}
$$

\n
$$
\kappa_p = a_p \times \kappa
$$

\n
$$
\eta_p = a_p \times \eta
$$

The coordinate transformation functions

> [AM, Prix & Wette, PRD 107, 062005 (2023)]

The Metric in the New Lattice Coordinate

Corresponding non-zero terms in the new form of metric are

$$
\tilde{g}_{ff}^{\text{LS}} = \pi^2 \frac{\Delta T^2}{3}
$$
\n
$$
\tilde{g}_{a_p a_p}^{\text{LS}} = 2\pi^2 f^2
$$
\n
$$
\tilde{g}_{v_p v_p}^{\text{LS}} = 2\pi^2 f^2 \left(\frac{\Delta T^2}{12} + \Delta_{ma}^2\right)
$$
\n
$$
\tilde{g}_{d_{asc}d_{asc}}^{\text{LS}} = 2\pi^2 f^2
$$
\n
$$
\tilde{g}_{\kappa\kappa}^{\text{LS}} = \frac{\pi^2}{2} f^2
$$
\n
$$
\tilde{g}_{\eta\eta}^{\text{LS}} = \frac{\pi^2}{2} f^2
$$
\n
$$
\tilde{g}_{v_p d_{asc}}^{\text{LS}} = \tilde{g}_{d_{asc} v_p}^{\text{LS}} = 2\pi^2 f^2 \Delta_{ma}
$$

- Each of the metric coefficient is nearlyconstant now.
- Internally we use $\lambda_{int} := \{a_p, v_p, d_{asc}, \kappa_p, \eta_p\}$

coordinates to perform lattice-tiling

- For the remaining parameters (f and Δ_{ma}) we put templates in a conservative way
- We set $f = f_{max}$ and $\Delta_{ma} = max(\Delta_{ma})$ over the search range
- Good approximation when, $\Delta f \ll f$ and Δ Tasc << Δ _{ma}

Injection-Recovery: 1-D Template Banks

Injection-Recovery: 2-D Template Banks 18

[AM, Prix & Wette, PRD 107, 062005 (2023)]

Mismatch Distribution: Semi-Coherent Case

Mismatch (μ) is defined as:

$$
\mu = \frac{\rho^2(\mathcal{A}, \lambda_s; \lambda_s) - \rho^2(\mathcal{A}, \lambda_s; \lambda)}{\rho^2(\mathcal{A}, \lambda_s; \lambda_s)}
$$

 $T_{obs} = 30$ days, $T_{seg} = 1$ day 1000 randomly drawn samples for injection-recovery test ever large parameter space: *P*⁰

*P*0

Freq: 10 —700 Hz ASINI: $0.3 - 3.5$ lt-sec PORB: 68023.7 ± 0.2 sec TASC: 1124044455 ± 1000 sec

FIG. 4. Distribution of coherent persons and separate *n*umber μ (*r*ight plot), μ 0 (right plot), obtaining plot and mismatches μ Semi-coherent mismatch distribution for the 4D template bank searching {FREQ, ASINI, PORB, TASC} for an injected signal

from 1000 simulated simulated 4D searches over a small box in *f, a*p*, t*asc and *P*orb around the injected signals, with parameters [MPW, PRD 107, 062005 (2023)]

Results From Two Realistic Search Setups

• Example of BinaryWeave pipeline characteristics and timing model for two search setups:

FIG. 6. CPU run-time *C^P* per search box as a function of the number of (semi-coherent) templates *N*

the measured Binary Weaver run times, while the solid line indicates the e \mathcal{L}_max

[MPW, PRD 107, 062005 (2023)]

e↵ective cost per template of *C*^t = 0*.*145 ms.

Mismatch Distribution: Small Mismatch Test

❖Two sets of 500 randomly drawn injection-recovery samples for small mismatch maximum mismatch $(\mu_{max}) = 0.05$:

Semicoherent mismatch distribution for the 4D template bank searching {FREQ, ASINI, PERIOD, TASC} for an injected signal

[MPW, PRD 107, 062005 (2023)]

21

Sumber of Templates C. Required computing resources *1. Number of templates*

Number of templates $(=\mathcal{N})$ can be calculated as: *1. Testing 1D and 2D lattice tilings* a parameter space *P* (not counting any extra templates As discussed in Sec. II C, the *bulk* template count for Number of templates (= \mathcal{N}) can be calcula Using the metric expressions in Eq. (14), this can be

$$
\mathcal{N} = \theta_n \mu_{\max}^{-n/2} \int_{\mathcal{P}} \sqrt{\det g(\lambda)} d^n \lambda,
$$

where,

where,
$$
\theta_n = \begin{cases} 2^{-n} n^{n/2} & \text{for } \mathbb{Z}_n, \\ \sqrt{n+1} \left[\frac{n(n+2)}{12(n+1)} \right]^{n/2} & \text{for } A_n^* \end{cases}
$$
 n: number of dimension μ_{max} : maximum mismatch

 μ_{max} : maximum mismatch ^p*,*min) ⇥(*t*asc*,*max *t*asc*,*min)*,*

Total number of templates for the 4D search O $\{$ FREQ, ASINI, PERIOD, TASC $\}$ İS: Total number of templates for the 4D search *and the 4D search f* θ on θ *f* ion common of the place of the satisfied, as well as place the satisfied only one of the sa temporal in the signal as \mathbf{v}_1 in the signal as \mathbf{v}_2 in the signal as \mathbf{v}_1 or templates for the 4D search
NL PERIOD, TASC[}] IS: *µ*2 max ³⁶p² (*^f* ⁴

$$
\hat{\mathcal{N}}_{4D} = \frac{\theta_4}{\mu_{\text{max}}^2} \frac{\pi^4 \gamma \Delta T^2}{36\sqrt{2}} (f_{\text{max}}^4 - f_{\text{min}}^4)(a_{p,\text{max}}^3 - a_{p,\text{min}}^3)
$$

$$
\times (\Omega_{\text{max}}^2 - \Omega_{\text{min}}^2)(t_{\text{asc,max}} - t_{\text{asc,min}}),
$$
with

2. Testing 3D and 4D lattice tilings with, the *Portball* (i.e., $\frac{1}{2}$), given by $\frac{1}{2}$

$$
\gamma = \sqrt{1 + 12 \frac{(\overline{\Delta}_{\rm ma}^2 - \overline{\Delta_{\rm ma}^2})}{\Delta T^2}}.
$$

where **i** 2 [*Leaci & Prix, PRD 91, 102003 (2015)*]

BinaryWeave: Template Bank Size

 \mathbf{F} , each point \mathbf{F} and \mathbf{F} are space location in randomly chosen parameters in randomly chosen \mathbf{F} *Following the Schultfleting compares 1840* constructed by Binary weave versus with the incordition prediction. \mathbf{F} is a simulated 4D-box search and box search around a randomly chosen parameter-space location in \mathbf{F} *F* 2 *P*₀ (cf. a^p^{*f*} 1) and the second in the second second second a regular second second plot) decay a consector second legation. Number of semicoherent templates N_{4D} constructed by BinaryWeave versus with the theoretical predictions. Each point '+' corresponds to a simulated 4D-box search around a randomly chosen parameter-space location.

BinaryWeave: Timing Model

FIG. 6. CPU run-time *^C^P* per search box as a function of the number of (semi-coherent) templates *^N*ˆ4D for that box, for search \mathcal{L}_{PU} run-time \mathcal{L}_{P} per search box as a function of the number of (semi-conerent) templates $\mathbb{N}_{4\text{D}}$ for that box, for SEARCH SETUP-I (left plot) and SEARCH SETUP-II (right plot), defined in Table. II. The points '+' mark the measured BINARYWEAVE run times, while the solid line indicates the effective cost model prediction, using an FIG. 6. CPU run-time *^C^P* per search box as a function of the number of (semi-coherent) templates *^N*ˆ4D for that box, for search CPU run-time C_P per search box as a function of the number of (semi-coherent) templates N_{4D} for that box, for effective cost per template of $C_t = 0.145$ ms.

Sensitivity Depths The runtime per template *C*^t is found to be relatively constant over the search parameter "confidence level") *p*det. While this is astrophysically in-

• Sensitivity Depths (with per-template false-alarm probability 'pfa' and detection probability 'p_{det}') is defined as:

$$
\boxed{\mathcal{D}^{p_\text{det}}_{p_\text{fa}} \equiv \frac{\sqrt{S_\text{n}}}{h^{p_\text{det}}_{p_\text{fa}}}}
$$

the coherent and semi-coherent contributions to the contribution of the coherent contributions of \mathcal{L} total computing cost are proportional to *N* . Therefore • Sensitivity Depths for 6 different search setups at 'p_{fa}' = 10⁻¹⁰ are: As discussed in [70, 71], the sensitivity of a semi-

<u>Idue II</u>							
Search setup	$T_{\rm obs}$	ΔT	N	μ_{\max}	$\overline{{\mathcal D}^{90\%}_{p_{\rm fa}}}$	$\boxed{\mathcal{D}^{95\%}_{p_{\rm fa}}}$	$\boxed{\mathcal{D}^{99\%}_{p_{\rm fa}}}$
	$[\text{months}]$ $[\text{days}]$				$\left\ \left[1/\sqrt{\mathrm{Hz}} \right] \right\ \left[1/\sqrt{\mathrm{Hz}} \right] \left\ \left[1/\sqrt{\mathrm{Hz}} \right] \right\ $		
search setup-I	6			180 0.031	77	72	60
search setup-II	12	3		120 0.056	116	107	91
search setup-III	6	3	60	0.025	96	89	75
search setup-IV	12			360 0.025	93	86	73
search setup-V	6	10		18 0.025	120	111	94
search setup-VI	12	10		36 0.025	150	138	117

Table II

Sensitivity Depths at Different Computational Costs

Fig: Lower-limit of search sensitivity as a function of computational cost is shown here. The left panel corresponds to search setup-I ($T_{obs} = 180$ days, $T_{seg} = 1$ day) and the right-panel corresponds to SEARCH SETUP-II ($T_{obs} = 360$ days, $T_{seg} = 3$ days). SEARCH SETUP-II ($T_{obs} = 360$ days, $T_{seg} = 3$ days). [MPW, PRD $107, 062005$ (2023)]

What BINARYWEAVE Can Say About High Frequency/Larger Parameter Space Search?

Observational Scenarios: Different Parameter Spaces 28 Ubservational Scenarios: Different Parameter Spaces 90%*,* 95%*,* and 99%, respectively, using the measured (4D) mismatch distributions obtained for each setup (cf. Sec. IV B 2).

Search space P *f* [Hz] a_p [ls] P_{orb} [s] t_{asc} [GPS s] Reference(s)/comment(s)
 P_0 $10-700$ $0.3-3.5$ 68023.7 ± 0.2 1124044455.0 ± 1000 BINARYWEAVE test range P_0 10–700 0.3–3.5 68023.7 ± 0.2 1124044455.0 ± 1000 BINARYWEAVE test range
 P_1 20–500 1.26–1.62 68023.70496 ± 0.0432 897753994 ± 100 Leaci and Prix [36] P_1 20–500 $\begin{array}{|l}$ 1.26–1.62 $|68023.70496 \pm 0.0432| & 897753994 \pm 100 \\ 60–650 & 1.45–3.25 |68023.86048 \pm 0.0432| & 974416624 \pm 50 \end{array}$ Leaci and Prix [36] *P*² 60–650 1.45–3.25 68023.86048 *±* 0.0432 974416624 *±* 50 Abbott *et al.* [28] *P*³ 40–180 1.45–3.25 68023.86 *±* 0.12 1178556229 *±* 417 Zhang *et al.* [29] $\begin{array}{c|c} \mathcal{P}_4 \ \mathcal{P}_5 \end{array} \hspace{1cm} \begin{array}{|c|c|} \hline 600–700 \ 1000–1100 \ \hline \end{array}$ $\begin{array}{c|c}\n \mathcal{P}_5 \ \mathcal{P}_6 \ \end{array}$ $\begin{array}{|c|c|}\n 1000–1100 \\
 1400–1500\n\end{array}$ P_7 1400–1500 1.45–3.25 68023.70496 \pm 0.0432 974416624 \pm 100 different ranges in frequency P_7 with broad range in $a_{\rm p}$ $\frac{p_7}{p_8}$ $\frac{20-250}{20-1000}$ with broad range in *a*_p $\begin{array}{c|c} \mathcal{P}_8 \ \mathcal{P}_9 \ \end{array}$ 20–1000
20–1500 P_9 20–1500
 P_{10} 600–700 $\begin{array}{c|c}\n \mathcal{P}_{10} & 600–700 \\
 \mathcal{P}_{11} & 1000–1100\n \end{array}$ $\begin{array}{c|c}\n\mathcal{P}_{11} \\
\mathcal{P}_{12}\n\end{array}$ $\begin{array}{c|c}\n1000-1100 \\
1400-1500\n\end{array}$ P_{12} 1400–1500 1.40–1.50 68023.70496 \pm 0.0432 974416624 \pm 100 different ranges in frequency P_{13} with narrow range in $a_{\rm p}$ $\begin{array}{|c|c|c|}\n\hline\n\mathcal{P}_{13} & 20–500 \\
\hline\n\mathcal{P}_{14} & 20–1000\n\end{array}$ with narrow range in $a_{\rm p}$ $\begin{array}{|c|c|c|}\n \hline\n \mathcal{P}_{14} & 20–1000 \\
 \hline\n \mathcal{P}_{15} & 20–1500\n \end{array}$ $\begin{array}{|c|c|c|}\n\hline\n\mathcal{P}_{15} & 20–1500 \\
\hline\n\mathcal{P}_{16} & 600–700\n\end{array}$ $\begin{array}{c|c}\n \mathcal{P}_{16} & 600–700 \\
 \mathcal{P}_{17} & 1000–1100\n \end{array}$ $\begin{array}{c|c} \mathcal{P}_{17} & 1000–1100 \ \mathcal{P}_{18} & 1400–1500 \ \end{array}$ P_{18} 1400–1500 1.44–1.45 68023.70496 \pm 0.0432 974416624 \pm 100 different ranges in frequency
 P_{19} with well-constrained a_{p} $\begin{array}{|c|c|c|}\n\hline\n\mathcal{P}_{19} & 20–500 \\
\hline\n\mathcal{P}_{20} & 20–1000\n\end{array}$ with well-constrained $a_{\rm p}$ $\begin{array}{|c|c|}\n \hline\n \mathcal{P}_{20} & 20–1000 \\
 \hline\n \mathcal{P}_{21} & 20–1500\n \end{array}$ *P*²¹ 20–1500

Carlo tests of BINARYWEAVE. P_{1-3} represent observational constraints considered in recent CW searches and studies. In addition, various combinations of parameter-ranges are considered, \mathcal{P}_{4-21} , in order to explore the impact of improved observation constraints and reduced search ranges.
 IMPW PRD 107 062005 (2023) improved observation constraints and reduced search ranges. Different parameter space search regions considered for Sco X-1. P_0 has been used in this study as a test range for various Monte-[MPW, PRD 107, 062005 (2023)]

Table III

Computational Costs for Different Parameter Space **Table IV**

- Computing-cost estimates in million core hours [Mh] for different parameter spaces P_n (n = 1, 2, …, n) defined in Table. III.
- We consider two setups, search serup-I and SEARCH SETUP-II of Table I, assuming either a 3D or 4D template-bank.

 $\begin{array}{ll}\n 65 & 1.12 & 21.42 \\
 94 & 2.91 & 89.97\n \end{array}$ $3D$ search: FREQ, ASINI, TASC $\frac{94}{73}$ (2.91 89.97)
 $\frac{236}{70}$ (4D search: FREQ, ASINI, PORB, TASC

imal. We observe good agreement at small mismatches Table I

F-statistic implementation compared to the exact compared to the exact callculation. At higher mismatches *µ*max , the measured

Prospective Future Direction

- Communicate with **EM-observations for better constraints** on orbital parameters and spin-frequency of NS in Sco X-1: e.g. X-ray/Optical/IR/radio observers?
- Thoroughly searching for X-ray pulsation from Sco X-1 (*detection will be the gamechanger!*) => challenging but worthwhile [Galaudage et al., MNRAS **509,** 1745 (2022)]
- Convince the EM-observer to make an updated observation of P_{ORB} and T_{ASC} near the middle of an observing run to maximise the benefits
	- \rightarrow It is worth exploring if long-term (\sim 5-10 yrs) phase-evolution of Sco X-1 binary orbit can provide stricter constraints on P_{ORB} and T_{ASC}
- **Perhaps communicating with larger community to regarding tighter constraints on ASINI**
	- \rightarrow It will need deep observations in optical/IR/radio bands dedicated for this purpose; it will be critical for a breakthrough!
- Possibility of implementing GPU-based computation of *F*-statistic (e.g., CUDA, OpenCL?) [Wette et al., PRD 103, 083020]
- Spin-wandering effect due to stochastic accretion rate [AM, Messenger & Riles, PRD 97, 043016 (2018)] has been neglected in this study; worth incorporating Viterbi-like summing of segments for *F*-statistic [Melatos et al., PRD 104, 042003 (2021)]

References Important for BINARYWEAVE

- 1. P. Leaci & R. Prix, Phys. Rev. D 91, 102003 (2015)
- 2. CW F2F presentation by K. Wette at LVC-meeting, Glasgow (2016); DCC: [<LIGO-](https://dcc.ligo.org/LIGO-G1601794)[G1601794-v2](https://dcc.ligo.org/LIGO-G1601794)>
- 3. K. Wette, Phys. Rev. D 90, 122010 (2014)
- 4. K. Wette, S. Walsh, R. Prix, M. A. Papa, Phys. Rev. D 97, 123016 (2018)
- 5. P. Jaranowski, A. Krolak, and B. F. Schutz, Phys. Rev. D 58, 063001 (1998) [JKS]
- 6. R. Prix, Phys. Rev. D 75, 023004 (2007)
- 7. R. Prix, Classical Quantum Gravity 24, S481 (2007)
- 8. CW F2F presentation by R. Prix at LVC-meeting, Budapest (2015); DCC: [<LIGO-](https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?.submit=Identifier&docid=G1501145&version=)[G1501145-v2](https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?.submit=Identifier&docid=G1501145&version=)>
- 9. K. Wette, Phys. Rev. D 90, 122010 (2014)
- 10. A. Mukherjee, R. Prix, and K. Wette, Phys. Rev. D 107, 062005 (2023) [MPW]

THANK YOU!

Backup Slides

Optimal Covering Lattice OR Optimal Detection Lattice?

- Recently in a series of papers, Allen et. al. pointed out that <u>an optimal covering</u> lattice is NOT necessarily an optimal detection lattice
- The quantity that maximises detection probability is the optimal lattice quantiser [B. Allen, PRD (2021), B. Allen and E. Agrell, Ann. der Phys. (2021), B. Allen and A. Shoom, PRD (2021)]
- The quantiser constant *G* is the second moment, i.e., average squared distance from the nearest templates [B. Allen, PRD (2021)]
- However, it turned out that the advantage of optimal detection lattices (as pointed out by Allen+) offer only marginal improvements [B. Allen and A. Shoom, PRD (2021)]

 $\rightarrow A^*$ _n lattices seem to be near-optimal choice for n = 3 - 8 dim