



### Einstein@Home Search For Continuous Gravitational Waves From Vela Jr, Cas A and G347.3 in O3 data

Draft in Progress

June. 18, 2024 @ AEI Hannover

#### Jing Ming

AEI, Hannover (Max Planck Institute for Gravitational Physics ) On behalf of Einstein@Home Group

### CW candidates: Young SNRs



copyright@NASA/HST

 $h_0^{spdwn} = \frac{1}{d} \sqrt{\frac{nGI}{8c^3\tau}}$ 

### CW candidates: Young SNRs

 $h_0^{spdwn} = \frac{1}{d} \sqrt{\frac{nGI}{8c^3\tau}}$ 



copyright@NASA/HST

### CW candidates: Young SNRs

 $h_0^{spdwn} = \frac{1}{d}\sqrt{\frac{nGI}{8c^3\tau}}$ 



copyright@NASA/HST

## Directed search

#### **known** sky position **unknown** frequency, fdot and f2dot ...



**Vela Jr** Nature 396, 141-142(1998)



**G347.3** Credit: Chandra&XMM-Newton



Cas A copyright@NASA/JWST

• To maximise the detection probability : **PRD 2016, Ming et al** 

## Directed search

#### **known** sky position **unknown** frequency, fdot and f2dot ...





700-5000 yrs 200-900 pc



**G347.3** Credit: Chandra&XMM-Newton

1600 yrs

1.3 kpc



Cas A copyright@NASA/JWST

330 yrs 3.4 kpc

## Einstein@home

https://einsteinathome.org/

Einstein@Home uses your computer's idle time to search for weak astrophysical signals from spinning neutron stars using data from the LIGO gravitational-wave detectors, the MeerKAT radio telescope, the Fermi gamma-ray satellite, as well as archival data from the Arecibo radio telescope.

Active users: >500,000 Computing power: >50,000 CPU cores (taken into account GPU )

EM means Einstein@Home-month.





## Semi-Coherent method

Coherent search: computationally limited: necessary templates  $\propto T_{span}^6$ 

Semi-coherent search: Divide  $T_{span}$  in N segments of  $T_{coh}$ Less sensitive Computational cost  $\propto N \times T_{coh}^6$ 





- O3 first half data (~180 days)
- running on Einstein@Home for 7 months (GPU and CPU)
- Two bands: < 500 Hz and 500- 1500 Hz for three sources</li>
- frequency second time derivative included
- Maximum possible ranges for f, fdot and f2dot:

$$-f/\tau \leq f \leq 0 \text{ Hz/s}$$
$$0 \text{ Hz/s}^2 \leq \ddot{f} \leq 7 |\dot{f}|_{\max}^2 / f = 7f/\tau^2.$$

# Search Setups

| <mark>20 - 500 Hz</mark><br>500 - 1500 Hz | Vela Jr              | G347.3          | Cas A    |
|-------------------------------------------|----------------------|-----------------|----------|
| Number of seg X                           | <mark>6 x 30D</mark> | <b>3 x 60D</b>  | 12 x 15D |
| Tcoh (days)                               | 12 x 15D             | 6 x 30D         | 18 x 10D |
| frequency                                 | <b>1.9e-7</b>        | <b>6.7e-8</b>   | 4.7e-7   |
| spacing(Hz)                               | 4.7e-7               | 1.9e-7          | 7.0e-7   |
| Mismatch                                  | 22%                  | <mark>5%</mark> | 17%      |
|                                           | 17%                  | 22%             | 33%      |
| Number of                                 | 2.3e17               | 5.4e17          | 1.9e17   |
| Templates (fine)                          | 5.2e17               | 5.0e17          | 2.7e17   |

### Number of templates per Hz

٠



**Total:**  $2.2 \times 10^{18}$ 

- 8 million WU Each for 8 hours on host's CPU
- Each WU keeps top 50,000 candi and returned to E@H server

















### ho Upper Limit: G347.3



### ho Upper Limit: G347.3



### Upper limits on the NS ellipticity

$$arepsilon = rac{c^4}{4\pi^2 G} rac{h_0 D}{I f^2}$$



#### Upper limits on r-mode amplitude

$$\alpha = 0.028 \left(\frac{h_0}{10^{-24}}\right) \left(\frac{D}{1 \text{ kpc}}\right) \left(\frac{100 \text{ Hz}}{f}\right)^3$$





- no detection of CW, but set most constraint upper-limits
- widest search range for all three sources (f, fdot and f2dot)
- Follow-ups on top candidates are on going. might be signals?
  - If not: Upper-limits will be further improved by ~20%.

# Thank you

# Search Setups

| <mark>20 - 500 Hz</mark><br>500 - 1500 Hz | Vela Jr              | G347.3                     | Cas A                      |
|-------------------------------------------|----------------------|----------------------------|----------------------------|
| Number of seg X                           | <mark>6 x 30D</mark> | <b>3 x 60D (Depth:124)</b> | 12 x 15D                   |
| Tcoh (days)                               | 12 x 15D             | 6 x 30D                    | 18 x 10D <i>(Depth:90)</i> |
| frequency                                 | <b>1.9e-7</b>        | <b>6.7e-8</b>              | 4.7e-7                     |
| spacing(Hz)                               | 4.7e-7               | 1.9e-7                     | 7.0e-7                     |
| Mismatch                                  | 22%                  | <mark>5%</mark>            | 17%                        |
|                                           | 17%                  | 22%                        | 33%                        |
| Number of                                 | 2.3e17               | 5.4e17                     | 1.9e17                     |
| Templates (fine)                          | 5.2e17               | 5.0e17                     | 2.7e17                     |

# S0 set-up <500 Hz

| Target                   | Vela Jr                                       | Cas A                                                                                 | G347.3       |  |  |  |
|--------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|--------------|--|--|--|
| frequency search range   |                                               | 20 Hz ~ 500 Hz                                                                        |              |  |  |  |
| Tcoh [hours]/setup index | 720/38                                        | 720/38 360/18                                                                         |              |  |  |  |
| Nsegments                | 6                                             | 12                                                                                    | 3            |  |  |  |
| Tspan                    | 15552000                                      | 15552000                                                                              | 15552000     |  |  |  |
| df (coarse)              | 1.902478930045850e-07<br>(= 0.05 Hz / 262815) | 1.902478930045850e-074.660092829049155e-0<br>(= 0.05 Hz / 262815) (= 0.05Hz / 107294) |              |  |  |  |
| dfdot (coarse)           | 4.494707e-13                                  | 1.797883e-12                                                                          | 8.703963e-14 |  |  |  |
| df2dot (coarse)          | 2.051778e-19                                  | 7.340665e-19                                                                          | 2.564723e-20 |  |  |  |
| gamma_refine_1 13        |                                               | 21                                                                                    | 7            |  |  |  |
| gamma_refine_2           | 11                                            | 21                                                                                    | 5            |  |  |  |
|                          |                                               |                                                                                       |              |  |  |  |

# S0 set-up >500 Hz

| Target                   | Vela Jr                                    | Cas A                                  | G347.3                                  |  |
|--------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------|--|
| frequency search range   |                                            | 500 Hz ~ 1500 Hz                       |                                         |  |
| Tcoh [hours]/setup index | 360/18                                     | 240/7                                  | 720/38                                  |  |
| Nsegments                | 12                                         | 18                                     | 6                                       |  |
| Tspan                    | 15552000                                   | 15552000                               | 15552000                                |  |
| <b>df</b> (coarse)       | 4.6600928290491546592e-7<br>(=0.05/107294) | 6.990074094785406e-07<br>(=0.05/71530) | 1.902478930045850e-07<br>(=0.05/262815) |  |
| dfdot (coarse)           | 1.797883e-12                               | 4.045236e-12                           | 4.494707e-13                            |  |
| df2dot (coarse)          | 7.340665e-19                               | 2.477474e-18                           | 2.051778e-19                            |  |
| gamma_refine_1           | 21                                         | 13                                     | 13                                      |  |
| gamma_refine_2           | 21                                         | 21                                     | 11                                      |  |

### The optimisation method

• Optimisation method paper: **PRD 93, 064011 (2016)** 



#### A optimal search plan including

A: which astrophysical targetsB: what parameter spaceC: what set-up

such that the detection probability is maximised!

### Optimisation scheme



### Optimization method

(J. Ming, B. Krishnan, M. A. Papa, C. Aulbert, and H. Fehrmann. Physical Review D, 93(6):064011, Mar. 2016.)



Allow different set-ups across cells (multiple set-ups):

same cells from same source with different set-ups shouldn't be picked twice, this ranking doesn't work.

## **Background info of CW**

- Template searches need lots of computing power
- \*  $\mathcal{F}$ -statistic: detection statistic based on matched filtering filtering
- \* Computing power needed in CW searches:

Search template waveform =  $(\alpha, \delta, f, \dot{f}, \ddot{f}, ...)$ 

Spacing between templates: $\delta f \propto 1/T_{\rm obs}$  $\delta \dot{f} \propto 1/T_{\rm obs}^2$  $\delta \dot{f} \propto 1/T_{\rm obs}^2$  $\delta \ddot{f} \propto 1/T_{\rm obs}^3$  $\delta \alpha \propto 1/T_{\rm obs}$  $\delta \delta \propto 1/T_{\rm obs}$  $\delta \delta \propto 1/T_{\rm obs}$ 



## **Background info of CW**

#### Very weak GWs from isolated spinning neutron star



## **Background info of CW**

Making detection or not depends on:

1: sensitivity of detectors (data)

2: sensitivity of the search (what we do) A: computing budget (Einstein@Home) B: how wisely we spend the budget (method can maximise detection probability)

### Results: injection and recovery

Considering 7 values of h0, spanning the range  $[4e-26 \sim 5e-25]$ .

A search is performed with the same grids and set-up as the original E@H search, in the neighbourhood of the fake signal parameters.

Counting the fraction of recovered signals out of the total 1000.

The h0 versus confidence data is fit with a sigmoid of the form





### disturbed band Identification



### OPTIMISE A SEARCH

Maximize the detection probability at fixed computing budget by choosing appropriately: 1:the search set-up 2: the parameter space, including which targets to search Ming+2016

| Source               | Age<br>(kyr) | Distance<br>(kpc) | Right Ascension<br>(h:m:s) | Declination<br>(°:':") | References                                             |
|----------------------|--------------|-------------------|----------------------------|------------------------|--------------------------------------------------------|
| G18.9–1.1            | 2.6-6.1      | 1.6-2.5           | 18:29:13.1                 | -12:51:13              | Ranasinghe et al. (2020), Shan et al. (2018),          |
|                      |              |                   |                            |                        | Harrus et al. (2004)                                   |
| G39.2-0.3/3C 396     | 3-7.3        | 6.2-8.5           | 19:04:04.7                 | 5:27:12                | Shan et al. (2018), Su et al. (2010)                   |
|                      |              |                   |                            |                        | Harrus & Slane (1999)                                  |
| G65.7+1.2/DA 495     | 7–20         | 1–5               | 19:52:17.0                 | 29:25:53               | Karpova et al. (2015), Kothes et al. (2008)            |
| G93.3+6.9/DA 530     | 2.9-7        | 1.7-3.5           | 20:52:14.0                 | 55:17:22               | Straal & van Leeuwen (2019), Jiang et al. (2007),      |
|                      |              |                   |                            |                        | Landecker et al. (1999), Foster & Routledge (2003)     |
| G189.1+3.0/IC 443    | 3-30         | 1.4-1.9           | 06:17:05.3                 | 22:21:27               | Ambrocio-Cruz et al. (2017), Kargaltsev et al. (2017), |
|                      |              |                   |                            |                        | Swartz et al. (2015), Fesen & Kirshner (1980)          |
| G266.2-1.2/Vela Jr.  | 0.69-5.1     | 0.2-1             | 08:52:01.4                 | -46:17:53              | Allen et al. (2014), Liseau et al. (1992)              |
| G353.6-0.7           | 10-40        | 3.2-6.1           | 17:32:03.3                 | -34:45:18              | Klochkov et al. (2015), Fukuda et al. (2014),          |
|                      |              |                   |                            |                        | Tian et al. (2008)                                     |
| G1.9+0.3             | 0.10-0.26    | 8.5-10            | 17:48:46.9                 | -27:10:16              | Reynolds et al. (2008), Roy & Pal (2014)               |
| G15.9+0.2            | 0.54-5.7     | 6.0-16.7          | 18:18:52.1                 | -15:02:14              | Reynolds et al. (2006), Sasaki et al. (2018)           |
| G111.7-2.1/Cas A     | 0.28-0.35    | 3.3-3.4           | 23:23:27.9                 | 58:48:42               | Ilovaisky & Lequeux (1972), Reed et al. (1995),        |
| an and the stated    |              |                   |                            |                        | van den Bergh (1971), Fesen et al. (2006)              |
| G291.0-0.1/MSH 11-62 | 1.2 - 10     | 3.0-10            | 11:11:48.6                 | -60:39:26              | Roger et al. (1986), Moffett et al. (2001),            |
|                      |              |                   |                            |                        | Harrus et al. (2004), Slane et al. (2012)              |
| G330.2+1.0           | 0.8-9.8      | 4.9-10            | 16:01:03.1                 | -51:33:54              | McClure-Griffiths et al. (2001), Park et al. (2009),   |
|                      |              |                   |                            |                        | Borkowski et al. (2018), Leahy et al. (2020)           |
| G347.3-0.5           | 0.1-6.8      | 0.9-6.0           | 17:13:28.3                 | -39:49:53              | Slane et al. (1999), Wang et al. (1997),               |
|                      |              |                   |                            |                        | Cassam-Chenai et al. (2004), Lazendic et al. (2003),   |
|                      |              |                   |                            |                        | Tsuji & Uchiyama (2016)                                |
| G350.1-0.3           | 0.6-2.5      | 4.5-9.0           | 17:20:54.5                 | -37:26:52              | Gaensler et al. (2008), Lovchinsky et al. (2011),      |
|                      |              |                   |                            |                        | Yasumi et al. (2014), Leahy et al. (2020)              |
| G354.4+0.0           | 0.1-0.5      | 5-8               | 17:31:27.5                 | -33:34:12              | Roy & Pal (2013)                                       |



$$dP(f_i, f_{j_i} s_k) = P_0(f_i, f) x$$
  
$$\int_{h_0 - \min}^{h_0 - \max} P_0(h_0) x \eta(f_i, f, s_k, h_0) dh_0 df df$$

detection efficiency averaged over all parameters other than for  $h_0\mbox{:}$ 

- Depends on the intrinsic amplitude of signal (h<sub>0</sub>)
- On the sensitivity of the specific search  $(s_k)$
- On the noise of the detectors (implicitly)

$$dP(f_i, \dot{f}_{j,} s_k) = P_0(f_i, \dot{f}) x$$

$$\int_{h_0-min}^{h_0-max} P_0(h_0) x \eta(f_i, \dot{f}, s_k, h_0) dh_0 df d\dot{f}$$

Priors on frequency and freq derivative: uniform or log uniform.

$$dP(f_{i},\dot{f}_{j},s_{k}) = P_{0}(f_{i},\dot{f}) \times$$

$$\int_{h_{0}-min}^{h_{0}-max} P_{0}(h_{0}) \times \eta(f_{i},\dot{f},s_{k},h_{0}) dh_{0} df df$$

$$h_{0} = \frac{4\pi^{2}G}{c^{4}} \frac{I_{zz}f^{2}\varepsilon}{D}.$$

### $h_0$ recast in terms of the ellipticity $\epsilon$

$$dP(f_{i},\dot{f}_{j},S_{k}) = P_{0}(f_{i},\dot{f}_{j}) \times \int_{\varepsilon_{\min}}^{\varepsilon_{\max}} P_{0}(\varepsilon) \times \eta(f_{i},\dot{f}_{j},S_{k},\varepsilon) d\varepsilon df d\dot{f}$$

$$P_{0}(\varepsilon) = \begin{cases} \frac{1}{\varepsilon} \frac{1}{\log(\varepsilon^{\max}/\varepsilon^{\min})} & \varepsilon^{\min} < \varepsilon < \varepsilon^{\max} \\ 0 & \text{elsewhere.} \end{cases}$$

 $\epsilon_{min}$ =10<sup>-14</sup> (from magnetic field deformations)

### $\varepsilon_{max}$ =min(fiducial value, $\varepsilon_{spin-down}$ )

$$\varepsilon_{\text{spin-down}} = \sqrt{\frac{5c^5}{32\pi^4 G}} \frac{x|\dot{f}}{If^5}$$

- Can't have more GWs emitted than responsible for entire fdot kinetic energy loss
  - Ellipticity can't be larger than that, that sustains emission at spindown level
  - In fact in general it is lower : x (from Crab: < 0.2%)