Bayesian $\mathcal F$ -statistic-based parameter estimation of continuous gravitational waves from known pulsars Based on [A. Ashok et al., PRD 109, 104002 \(2024\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.104002)

P. B. Covas on behalf of A. Ashok

Max Planck Institute for Gravitational Physics

June 19, 2024

Outline

[Introduction](#page-2-0)

2 [Likelihoods and Bayesian framework](#page-8-0)

[Tests](#page-18-0)

[Conclusions](#page-30-0)

Outline

1 [Introduction](#page-2-0)

[Likelihoods and Bayesian framework](#page-8-0)

[Tests](#page-18-0)

[Search for PSR J1526-2744](#page-25-0)

[Conclusions](#page-30-0)

Targeted CW searches

ALL-SKY SEARCHES Types of CWs searches using data search computational **DIRECTED SEARCHES** from ground-based cost [sources with known positions] detectors like Advanced LIGO: **TARGETED or NARROWBAND SEARCHES** [sources with ephemerides] knowledge about the source

- Massive reduction in parameter-space size compared to wide parameter-space searches: a targeted search can use a fully coherent combination of all the data, leading to the maximum possible sensitivity
- Presence of a neutron star is assured and its rotational frequency and spin-down are known: a null measurement is directly informative about the gravitational-wave emission of the source

Motivation for a new pipeline

- We propose a new pipeline to carry out targeted searches
- Previously, only a single Bayesian method existed for parameter estimation on known pulsars, often referred to as the Time Domain method or Heterodyne method
- We introduce a new expression and implementation of the CW signal likelihood function, based on the well-established and efficient F-statistic framework
- **•** Instead of analytically maximizing the likelihood ratio over the 4 amplitude parameters, we set up priors on them and keep the complete likelihood or analytically marginalize over ϕ_0
- This approach can be used for any combination of parameters describing the CW signal, but here we focus on targeted searches, only computing the posterior over the unknown amplitude parameters

CW signal model

- Varying mass quadrupole moment in a fast-rotating neutron star. In the absence of precession, the signal is expected at twice the rotation frequency and with twice the rotational spin-down of the star.
- The signal strain s in the detector X has the form

$$
s^X(t) = F_+(t; \alpha, \delta, \psi) h_+(t) + F_\times(t; \alpha, \delta, \psi) h_\times(t),
$$

where $+$ " and ∞ " indicate the two gravitational-wave polarizations, and $F_+(t; \alpha, \delta, \psi)$ and $F_\times(t; \alpha, \delta, \psi)$ are the detector antenna-pattern functions. The two waveforms $h_{+}(t)$ and $h_{\times}(t)$ are given by

$$
h_+(t) = \frac{h_0}{2}(1+\cos^2\iota)\cos[\phi(t)+\phi_0],
$$

$$
h_\times(t) = h_0\cos\iota\sin[\phi(t)+\phi_0].
$$

Amplitude and phase-evolution parameters

Two different types of parameters define the CW signal:

Amplitude A

- **•** Gravitational-wave amplitude: $h_0 = C \frac{I_{zz} \epsilon f_0^2}{d}$
- Inclination angle: ι
- Polarization angle: ψ
- Initial phase: ϕ_0

Phase-evolution λ

- Frequency evolution: $f_0, f_1, ...$
- Sky position: α and δ
- Keplerian binary orbit: $a_{\rm p}$ (projected semi-major axis), $P_{\rm orb}$ (orbital period), $t_{\rm asc}$ (time of ascension), e (eccentricity), and ω (argument of periapsis)

In a targeted search, all phase-evolution parameters are known or uncertainty is small enough to allow for a fully coherent search

Signal model in JKS amplitude parameters

CW signal depends non-linearly on the physical amplitude **parameters** A. A different set of amplitude parameters $\mathcal A$ linearize the CW signal $s^X(t)$ in the frame of detector X:

$$
s^X(t; \lambda, \lambda) = \sum_{\mu=1}^4 \mathcal{A}^{\mu} h^X_{\mu}(t; \lambda),
$$

where $h^{\rm X}_\mu$ are basis functions (depend on phase-evolution parameters) and

$$
\mathcal{A}^{1} \equiv \frac{h_{0}(1+\cos^{2}\iota)}{2}\cos\phi\cos\psi - h_{0}\cos\iota\sin\phi\sin\psi,
$$

\n
$$
\mathcal{A}^{2} \equiv \frac{h_{0}(1+\cos^{2}\iota)}{2}\cos\phi\sin\psi + h_{0}\cos\iota\sin\phi\cos\psi,
$$

\n
$$
\mathcal{A}^{3} \equiv -\frac{h_{0}(1+\cos^{2}\iota)}{2}\sin\phi\cos\psi - h_{0}\cos\iota\cos\phi\sin\psi,
$$

\n
$$
\mathcal{A}^{4} \equiv -\frac{h_{0}(1+\cos^{2}\iota)}{2}\sin\phi\sin\psi + h_{0}\cos\iota\cos\phi\cos\psi
$$

Outline

[Introduction](#page-2-0)

2 [Likelihoods and Bayesian framework](#page-8-0)

[Tests](#page-18-0)

[Conclusions](#page-30-0)

Likelihood ratio I

We define the scalar product:

$$
(x|y) \equiv 2 \sum_{X}^{N_{\rm det}} S_X^{-1} \int_0^T x^X(t) y^X(t) dt
$$

The noise hypothesis \mathcal{H}_N states that the strain data $\mathsf{x}^{\mathsf{X}}(t)$ contains only (Gaussian) noise $n^\mathsf{X}(t)$, i.e., $s^\mathsf{X}=0$. It can be shown that the likelihood function for \mathcal{H}_{N} is:

$$
P(x|\mathcal{H}_{N}) = \kappa e^{-\frac{1}{2}(x|x)}
$$

The signal hypothesis \mathcal{H}_S states that the strain data $x^\mathcal{X}(t)$ contains a signal $s^\mathcal{X}(t)$ in addition to (Gaussian) noise $n^\mathcal{X}(t)$:

$$
x^{X}(t) = n^{X}(t) + s^{X}(t; A, \lambda)
$$

$$
P(x | \mathcal{H}_{S}, A, \lambda) = \kappa e^{-\frac{1}{2}(x - s | x - s)}
$$

Likelihood ratio II

To decide whether the signal or noise hypothesis is favored by the data x , both frequentist and Bayesian frameworks require expressing the likelihood ratio between the two hypotheses \mathcal{L} :

$$
\mathcal{L}(x; \mathcal{A}, \lambda) \equiv \frac{P(x | \mathcal{H}_\mathrm{S}, \mathcal{A}, \lambda)}{P(x | \mathcal{H}_\mathrm{N})} = e^{(x | s) - \frac{1}{2}(s | s)},
$$

which when substituting the signal $s^X = \sum_{\mu=1}^4 \mathcal{A}^\mu \, h^X_\mu(t;\lambda)$ becomes:

$$
\log \mathcal{L}(\mathsf{x}; \mathcal{A}, \lambda) = \mathcal{A}^{\mu} \mathsf{x}_{\mu} - \frac{1}{2} \mathcal{A}^{\mu} \mathcal{M}_{\mu\nu} \mathcal{A}^{\nu} = \mathcal{A}^{\mu} \mathsf{x}_{\mu} - \frac{\rho^2}{2},
$$

with implicit summation over repeated amplitude indices $\mu, \nu = 1 \dots 4$, and the definitions

$$
x_{\mu}(\lambda) \equiv (x|h_{\mu}) \quad \text{and} \quad \mathcal{M}_{\mu\nu}(\lambda) \equiv (h_{\mu}|h_{\nu})
$$

This likelihood is mathematically equivalent to the one used by the Time-domain heterodyning method, although its calculation is done differently

Statistical properties

log $\mathcal L$ is a Gaussian-distributed quantity since each x_μ follows a Gaussian distribution.

Histogram of 10 000 log-likelihood ratio values for the noise-only case. The red line shows the expected Gaussian distribution with a mean of -0.5 and a standard deviation of 1.

The likelihood ratio L can be analytically marginalized over ϕ_0 . Some advantages:

- It leaves us with less dimensions to explore numerically (4 to 3)
- It avoids the bi-modality of posteriors in $\psi \phi_0$
- It provides a consistency check for the results from the full-likelihood

We can <mark>explicitly factor out the</mark> ϕ_0 -<mark>dependence</mark> in the $\mathcal{A}^\mu{}x_\mu$ term:

$$
\mathcal{A}^{\mu}x_{\mu}=q\,\cos(\phi_0-\varphi_0),
$$

where q and φ_0 are independent of ϕ_0 .

Marginalized likelihood II

We can see that the signal power ρ^2 does not depend on ϕ_0 , and therefore writing the likelihood ratio in the form

$$
\mathcal{L}(x;\mathcal{A})=e^{-\frac{1}{2}\rho^2}e^{q\cos(\phi_0-\varphi_0)}
$$

makes the ϕ_0 dependence fully explicit. Using a uniform ϕ_0 -prior we can $\bm{\mathrm{obtain}}$ the ϕ_0 -marginalized likelihood ratio \mathcal{L}^{ϕ_0} in the form

$$
\mathcal{L}^{\overline{\phi_0}} \equiv \int_0^{2\pi} \mathcal{L}(x; \mathcal{A}) P(\phi_0 | \mathcal{H}_S) d\phi_0
$$

= $\frac{1}{2\pi} \int_0^{2\pi} \mathcal{L}(x; \mathcal{A}) d\phi_0$
= $\frac{1}{2\pi} e^{-\frac{1}{2}\rho^2} \int_0^{2\pi} e^{q \cos(\phi_0 - \varphi_0)} d\phi_0 = e^{-\frac{1}{2}\rho^2} I_0(q),$

where we used the Jacobi-Anger expansion to see that $\int_0^{2\pi} e^{q\,\cos\phi}\,d\phi = 2\pi\,l_0(q)$ in terms of the modified Bessel function of the first kind \ln .

Priors on amplitude parameters I

If there are no observational constraints on the rotation axis of the pulsar, we assume isotropic "ignorance" priors on the angle parameters:

- The initial phase ϕ_0 corresponds to the pulsar rotation angle at a reference time and the ignorance prior is uniform over the range $\phi_0 \in [0, 2\pi)$
- The ignorance prior for the direction of the rotation axis is also uniform \in [0, 2 π) and it translates to uniform priors in cos $\iota \in [-1,1]$ and $\psi \in [0, 2\pi)$
- We see that $\psi \to \psi + \pi$ leaves the \mathcal{A}^{μ} unchanged, and further that $\psi \rightarrow \psi + \pi/2$ flips their sign, which can be compensated by $\phi_0 \rightarrow \phi_0 + \pi$. We can therefore choose a gauge where $\psi \in [-\pi/4, \pi/4)$ and $\phi_0 \in [0, 2\pi)$.

When pulsar observations do constrain these priors, they can be modified appropriately.

Priors on amplitude parameters II

For h_0 the choice of prior range $[h_{\text{low}}, h_{\text{high}}]$ and probability distribution is less straightforward:

- For a known pulsar, one could inform h_{high} from the observed pulsar parameters, namely the spindown upper limit $h_\mathrm{high} < h_0^\mathrm{sd}$
- If a previous search has established $\,h_0^{\mathrm{UL}}\,$ for the pulsar, then, under the assumption that the signal amplitude does not change over time, one could require $h_{\rm high} < h^{\rm UL}_0$
- Use theoretical range of ellipticities ε of neutron stars to derive an h_0 prior range from $h_0(\varepsilon) = \frac{4\pi^2 G \varepsilon I_{zz} f^2}{c^4 d}$ c 4d
- Quadrupolar deformations can be sourced by magnetic field B : smallest expected signal may correspond to this, so $h_{\text{low}} \sim h_0(B)$

For a strong signal, the prior has minimal influence on the resulting posterior (likelihood strongly peaked). For a weak signal, a uniform prior on h_0 leads to a more conservative upper limit compared to a log-uniform distribution. Conversely, a log-uniform prior ensures a uniform sampling when our ignorance spans several orders of magnitude.

Bayes' theorem

Using Bayes' theorem, the posterior for the unknown amplitude parameters A is:

$$
P(\mathcal{A}|x, \mathcal{H}_{\rm S}, \lambda) = P(\mathcal{A}|\mathcal{H}_{\rm S}, \lambda) \frac{P(x|\mathcal{H}_{\rm S}, \mathcal{A}, \lambda)}{P(x|\mathcal{H}_{\rm S}, \lambda)}
$$

= $P(\mathcal{A}|\mathcal{H}_{\rm S}, \lambda) \frac{\mathcal{L}(x; \mathcal{A}, \lambda) P(x|\mathcal{H}_{\rm N})}{P(x|\mathcal{H}_{\rm S}, \lambda)}$

where $P(A|H_S, \lambda)$ is the prior on the amplitude parameters, $P(x|\mathcal{H}_\text{S}, \mathcal{A}, \lambda)$ is the signal likelihood, and $P(x|\mathcal{H}_\text{S}, \lambda)$ is the amplitude-marginalized signal likelihood.

Collecting all \mathcal{A} -independent factors into a proportionality constant k:

$$
P(\mathcal{A}|x,\mathcal{H}_{\mathrm{S}},\lambda)=k\mathcal{L}(x;\mathcal{A},\lambda)P(\mathcal{A}|\mathcal{H}_{\mathrm{S}},\lambda)
$$

where k can be determined via the normalization condition $\int P(\mathcal{A}|...) d^4\mathcal{A}=1.$

Software

- \bullet Two stochastic samplers tested: DYNESTY and BILBYMCMC
- \bullet On an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz processor, the median time for a single computation of the likelihood function is $\sim \mathcal{O}(\mu s)$
- The ϕ_0 -marginalized likelihood needs around twice as the full likelihood
- The known-pulsar search we did took 154 seconds (with 32-core parallelization) with the full likelihood

Outline

[Introduction](#page-2-0)

2 [Likelihoods and Bayesian framework](#page-8-0)

[Tests](#page-18-0)

[Conclusions](#page-30-0)

Tests I

Single signal without noise:

Tests I

Single signal without noise:

Tests I: Dynesty vs BilbyMCMC

Recovery of **multi-modal posterior** (signal with $\psi = -\pi/4$):

Tests II

PP plots in Gaussian noise: ideally, $x\%$ of the total number of injections should fall in the $x\%$ credible interval

Full likelihood Marginalized likelihood

Tests IIb: biases

The F -statistic calculation has some assumptions/simplifications that can lead to biases only visible for high SNR signals

Bias in h_0 for high SNR signals Bias as a function of some

 F -statistic calculation-related parameters

Tests III

Hardware injections in real data (also analyzed with the Time-domain heterodyning method for cross-check):

Outline

[Introduction](#page-2-0)

[Likelihoods and Bayesian framework](#page-8-0)

[Tests](#page-18-0)

[Conclusions](#page-30-0)

Search for PSR J1526-2744

- Discovered in a joint survey by TRAPUM and FERMI-LAT, distance of 1.3 kpc and $f_0 = 803.5$ Hz
- Timing solution is derived from 13 years of FERMI-LAT data that overlap with the Advanced LIGO observation runs
- Search done using a coherent combination of data from the O1, O2, and O3 observation runs of the Advanced LIGO detectors
- No CW signal is detected, both with the full and marginalized likelihoods
- \bullet 95% upper limit on h_0 is 6.7 \times 10⁻²⁷, a factor of 9.2 larger than the spin-down upper limit of the pulsar
- 95% upper limit on ϵ is 1.3×10^{-8} assuming a moment of inertia of 10^{38} kg·m²

Posterior distributions for PSR J1526-2744

Full likelihood: Marginalized likelihood:

Comparison with frequentist upper limits

Comparison with frequentist method (in red):

Comparison with frequentist upper limits

Comparison with frequentist method (in red):

Ratio of ULs for some other searched pulsars:

Outline

[Introduction](#page-2-0)

[Likelihoods and Bayesian framework](#page-8-0)

[Tests](#page-18-0)

5 [Conclusions](#page-30-0)

Future work

- Test limitations of the F-statistic framework: Gaussian noise assumption, uncertainties of noise floor, Dirichlet kernel and finite SFT length, ...
- Uncertainty on phase-evolution parameters
- More complex signal models, such as signals with more than one frequency or more complicated frequency evolutions
- Characterize usage of Bayesian evidence instead of results from posterior distributions
- Code efficiency comparison to Glasgow pipeline
- Apply framework to more pulsars!

Summary

- A new Bayesian parameter estimation method, based on the highly optimized F -statistic framework
- Tested with simulated signals, PP plots, and hardware injections
- **•** First application on PSR J1526-2744, no detection!
- Timing solutions from new pulsars are very important

Source material

[A. Ashok et al., PRD 109, 104002 \(2024\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.104002)

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 101029058.